login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A209318 Number T(n,k) of partitions of n with k parts in which no part occurs more than twice; triangle T(n,k), n>=0, 0<=k<=A055086(n), read by rows. 11
1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 5, 3, 0, 1, 4, 6, 4, 1, 0, 1, 5, 8, 6, 2, 0, 1, 5, 10, 8, 3, 0, 1, 6, 11, 12, 5, 1, 0, 1, 6, 14, 14, 8, 1, 0, 1, 7, 16, 19, 11, 3, 0, 1, 7, 18, 23, 16, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

LINKS

Alois P. Heinz, Rows n = 0..400, flattened

EXAMPLE

T(8,3) = 5: [6,1,1], [5,2,1], [4,3,1], [4,2,2], [3,3,2].

T(8,4) = 3: [4,2,1,1], [3,3,1,1], [3,2,2,1].

T(9,3) = 6: [7,1,1], [6,2,1], [5,3,1], [4,4,1], [5,2,2], [4,3,2].

T(9,4) = 4: [5,2,1,1], [4,3,1,1], [4,2,2,1], [3,3,2,1].

T(9,5) = 1: [3,2,2,1,1].

Triangle begins:

  1;

  0, 1;

  0, 1, 1;

  0, 1, 1;

  0, 1, 2, 1;

  0, 1, 2, 2;

  0, 1, 3, 2, 1;

  0, 1, 3, 4, 1;

  0, 1, 4, 5, 3;

  0, 1, 4, 6, 4, 1;

MAPLE

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(expand(b(n-i*j, i-1)*x^j), j=0..min(2, n/i))))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):

seq(T(n), n=0..20);

MATHEMATICA

max = 15; g = -1+Product[1+t*x^j+t^2*x^(2j), {j, 1, max}]; t[n_, k_] := SeriesCoefficient[g, {x, 0, n}, {t, 0, k}]; t[0, 0] = 1; Table[Table[t[n, k], {k, 0, n}] /. {a__, 0 ..} -> {a}, {n, 0, max}] // Flatten (* Jean-Fran├žois Alcover, Jan 08 2014 *)

CROSSREFS

Columns k=0-10 give: A000007, A057427, A004526, A230059 (conjectured), A320592, A320593, A320594, A320595, A320596, A320597, A320598.

Row sums give: A000726.

Row lengths give: A000267.

Cf. A002620, A008289 (no part more than once), A055086, A117147 (no part more than 3 times).

Sequence in context: A177405 A323302 A303903 * A170984 A114021 A239287

Adjacent sequences:  A209315 A209316 A209317 * A209319 A209320 A209321

KEYWORD

nonn,tabf,look

AUTHOR

Alois P. Heinz, Jan 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)