The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A207709 Floor((H(n) + exp(H(n))*log(H(n)))/sigma(n)), where H(n) is the harmonic number sum_{i=1..n} 1/i. 3
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,11 COMMENTS An assertion equivalent to the Riemann hypothesis is: a(n) > 0 for every n >= 1. a(12*n) = 1 for all 1<=n<=43312. For n >= 1, a(2^(10^n)) so far appears to equal floor(n*(exp(1)-2/3) - 1/3). There exist integers n such that (H(n) + exp(H(n))*log(H(n)))/sigma(n) < 1.01 (i.e., n = 100630609505753353981293837481689271234222794240000*1087#). See A215640 for information on how to generate these numbers. - Arkadiusz Wesolowski, Aug 19 2012 LINKS Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000 J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (#6, 2002), 534-543. Eric W. Weisstein, MathWorld: Riemann Hypothesis Wikipedia, Jeffrey Lagarias EXAMPLE a(11) = 2 because (H(11) + exp(1)^H(11)*log(H(11)))/sigma(11) = 2.1387006307.... MATHEMATICA lst = {}; Do[h = NIntegrate[(1 - x^n)/(1 - x), {x, 0, 1}]; AppendTo[lst, Floor[(h + Exp@h*Log@h)/DivisorSigma[1, n]]], {n, 530}]; lst CROSSREFS Cf. A057641, A000203, A008594, A076633. Sequence in context: A060500 A187284 A160198 * A131718 A131017 A244227 Adjacent sequences:  A207706 A207707 A207708 * A207710 A207711 A207712 KEYWORD nonn AUTHOR Arkadiusz Wesolowski, Feb 19 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 05:44 EST 2021. Contains 349590 sequences. (Running on oeis4.)