The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206525 a(n) = 113*(n-1) - a(n-1) with n>1, a(1)=51. 4
 51, 62, 164, 175, 277, 288, 390, 401, 503, 514, 616, 627, 729, 740, 842, 853, 955, 966, 1068, 1079, 1181, 1192, 1294, 1305, 1407, 1418, 1520, 1531, 1633, 1644, 1746, 1757, 1859, 1870, 1972, 1983, 2085, 2096, 2198, 2209 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Positive numbers k such that k^2 == 2 (mod 113), where the prime 113 == 1 (mod 8). Equivalently, numbers k such that k == 51 or 62 (mod 113). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = a(n-2) + 113. G.f.: x*(51+11*x+51*x^2)/((1+x)*(x-1)^2). a(n) = (-113-91*(-1)^n+226*n)/4. a(n) = a(n-1)+a(n-2)-a(n-3). Sum_{n>=1} (-1)^(n+1)/a(n) = tan(11*Pi/226)*Pi/113. - Amiram Eldar, Feb 28 2023 MATHEMATICA LinearRecurrence[{1, 1, -1}, {51, 62, 164}, 40] (* or *) CoefficientList[Series[x*(51+11*x+51*x^2)/((1+x)*(x-1)^2), {x, 0, 40}], x] (* or *) a[1] = 51; a[n_] := a[n] = 113*(n-1) - a[n-1]; Table[a[n], {n, 1, 40}] PROG (Magma) [(-113-91*(-1)^n+226*n)/4: n in [1..60]]; CROSSREFS Sequences of the type n^2 == 2 (mod p), where p is a prime of the form 8k+1: A155449, A158803, A159007, A159008, A176010. Sequences of the type n^2 == 2 (mod p), where p is a prime of the form 8k-1: A047341, A155450, A164131, A164135, A167533, A167534, A177044, A177046, A204769. Sequence in context: A297829 A045068 A050701 * A216055 A034819 A335346 Adjacent sequences: A206522 A206523 A206524 * A206526 A206527 A206528 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Mar 09 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 12 07:24 EDT 2024. Contains 374237 sequences. (Running on oeis4.)