login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164131
Numbers k such that k^2 == 2 (mod 31).
5
8, 23, 39, 54, 70, 85, 101, 116, 132, 147, 163, 178, 194, 209, 225, 240, 256, 271, 287, 302, 318, 333, 349, 364, 380, 395, 411, 426, 442, 457, 473, 488, 504, 519, 535, 550, 566, 581, 597, 612, 628, 643, 659, 674, 690, 705, 721, 736, 752, 767, 783, 798, 814
OFFSET
1,1
COMMENTS
Sequences of the type n^2 == 2 (mod m) are basically defined for each m of A057126. See A047341 (m=7), A113804 (m=14), A155449 (m=17), A155450 (m=23), A158803 (m=41) etc. - R. J. Mathar, Aug 26 2009
FORMULA
a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = (31+(-1)^(n-1)+62(n-1))/4.
G.f.: x*(8+15*x+8*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Aug 26 2009
a(n) = 31*(n-1)-a(n-1) with n>1, a(1)=8. - Vincenzo Librandi, Nov 30 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(15*Pi/62)*Pi/31. - Amiram Eldar, Feb 28 2023
EXAMPLE
At n= 4, a(4)=(31-1+186)/4=54. At n=5, a(5)=(31+1+248)/4=70.
MATHEMATICA
Select[Range[850], Mod[#^2, 31]==2&] (* Harvey P. Dale, Feb 04 2011 *)
PROG
(PARI) isok(k) = Mod(k, 31)^2 == 2; \\ Michel Marcus, Nov 22 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 11 2009
EXTENSIONS
Entries checked by R. J. Mathar, Aug 26 2009
STATUS
approved