login
A164133
Primes p such that 4*p and 6*p are each the sum of two consecutive primes.
1
2, 3, 13, 43, 127, 167, 613, 647, 1033, 1483, 1543, 2297, 2927, 3701, 3823, 4463, 5101, 5417, 5657, 6133, 8081, 9227, 11273, 11833, 12511, 13291, 13873, 17627, 19853, 20011, 21313, 21727, 22193, 23041, 23059, 23081, 23159, 24443, 26347, 26947, 27407, 27527
OFFSET
1,1
LINKS
FORMULA
A163487 INTERSECT A118134.
EXAMPLE
p=13 is in the sequence because 4*13 = 52 = A001043(9) and 6*13 = 78 = A001043(12) are both in A001043.
MAPLE
P:= select(isprime, [2, seq(i, i=3..10^6)]):
PS:= P[1..-2] + P[2..-1]:
convert(P, set) intersect convert(1/4 * PS, set) intersect convert(1/6*PS, set); # Robert Israel, Dec 08 2024
MATHEMATICA
stcpQ[n_]:=Module[{a=4n, b=6n}, a==NextPrime[a/2]+NextPrime[a/2, -1]&&b== NextPrime[b/2]+NextPrime[b/2, -1]]; Select[Prime[Range[3100]], stcpQ] (* Harvey P. Dale, May 01 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended by R. J. Mathar, Aug 27 2009
STATUS
approved