login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164136
a(n) = 11*n*(n+1).
2
0, 22, 66, 132, 220, 330, 462, 616, 792, 990, 1210, 1452, 1716, 2002, 2310, 2640, 2992, 3366, 3762, 4180, 4620, 5082, 5566, 6072, 6600, 7150, 7722, 8316, 8932, 9570, 10230, 10912, 11616, 12342, 13090, 13860, 14652, 15466, 16302, 17160, 18040, 18942, 19866, 20812
OFFSET
0,2
FORMULA
a(n) = 22*A000217(n) = 11*A002378(n).
a(n) = 22*n + a(n-1) with n>0, a(0)=0. - Vincenzo Librandi, Nov 30 2010
G.f.: 22*x/(1-x)^3. - Vincenzo Librandi, Sep 12 2013
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Sep 12 2013
E.g.f.: 11*x*(2 + x)*exp(x). - G. C. Greubel, Sep 12 2017
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/11.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/11.
Product_{n>=1} (1 - 1/a(n)) = -(11/Pi)*cos(sqrt(15/11)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (11/Pi)*cos(sqrt(7/11)*Pi/2). (End)
MATHEMATICA
CoefficientList[Series[(22 x) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Sep 12 2013 *)
PROG
(Magma) [11*n*(n+1): n in [0..40]]; // Vincenzo Librandi, Sep 12 2013
(PARI) a(n)=11*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A136604 A064710 A246415 * A041946 A303858 A041948
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Aug 11 2009
EXTENSIONS
Offset corrected by R. J. Mathar, Aug 21 2009
STATUS
approved