login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164137
Number of binary strings of length n with equal numbers of 000 and 001 substrings.
6
1, 2, 4, 6, 11, 19, 35, 61, 111, 200, 369, 676, 1256, 2337, 4392, 8273, 15686, 29837, 57038, 109362, 210448, 406029, 785573, 1523217, 2959853, 5761671, 11234619, 21937768, 42894822, 83969696, 164552423, 322773812, 633679446, 1245032098, 2447951456, 4816241573
OFFSET
0,2
LINKS
Shalosh B. Ekhad and Doron Zeilberger, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, arXiv preprint arXiv:1112.6207 [math.CO], 2011. See subpages for rigorous derivations of g.f., recurrence, asymptotics for this sequence. [From N. J. A. Sloane, Apr 07 2012]
FORMULA
From Robert P. P. McKone, Apr 03 2024: (Start)
a(n) = 2^n - A371662(n) - A371682(n).
Conjecture: a(n) = ((8*n-72)*a(n-10) + (20*n-160)*a(n-9) + (6*n-26)*a(n-8) + (46-5*n)*a(n-7) - 16*a(n-6) + (56-11*n)*a(n-5) + (12-n)*a(n-4) + (n-18)*a(n-3) + n*a(n-2) + 2*n*a(n-1))/n for n>=10.
(End)
EXAMPLE
From Robert P. P. McKone, Apr 03 2024: (Start)
a(3) = 6: 010, 011, 100, 101, 110, 111.
a(4) = 11: 0001, 0100, 0101, 0110, 0111, 1010, 1011, 1100, 1101, 1110, 1111.
a(5) = 19: 00010, 00011, 01010, 01011, 01100, 01101, 01110, 01111, 10001, 10100, 10101, 10110, 10111, 11010, 11011, 11100, 11101, 11110, 11111.
(End)
MATHEMATICA
tup[n_] := Tuples[{0, 1}, n];
cou[lst_List] := Count[lst, {0, 0, 0}] == Count[lst, {0, 0, 1}];
par[lst_List] := Partition[lst, 3, 1];
a[n_] := a[n] = Map[cou, Map[par, tup[n]]] // Boole // Total;
Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}] (* Robert P. P. McKone, Apr 03 2024 *)
CROSSREFS
Cf. A371662 (more 000 than 001), A371682 (more 001 than 000).
Cf. A163493 (equal 00 and 01).
Sequence in context: A000786 A289080 A000694 * A018170 A113913 A002097
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 11 2009
STATUS
approved