OFFSET
0,2
LINKS
R. H. Hardin, Table of n, a(n) for n=0..500
Shalosh B. Ekhad and Doron Zeilberger, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, arXiv preprint arXiv:1112.6207 [math.CO], 2011. See subpages for rigorous derivations of g.f., recurrence, asymptotics for this sequence. [From N. J. A. Sloane, Apr 07 2012]
FORMULA
From Robert P. P. McKone, Apr 03 2024: (Start)
Conjecture: a(n) = ((8*n-72)*a(n-10) + (20*n-160)*a(n-9) + (6*n-26)*a(n-8) + (46-5*n)*a(n-7) - 16*a(n-6) + (56-11*n)*a(n-5) + (12-n)*a(n-4) + (n-18)*a(n-3) + n*a(n-2) + 2*n*a(n-1))/n for n>=10.
(End)
EXAMPLE
From Robert P. P. McKone, Apr 03 2024: (Start)
a(3) = 6: 010, 011, 100, 101, 110, 111.
a(4) = 11: 0001, 0100, 0101, 0110, 0111, 1010, 1011, 1100, 1101, 1110, 1111.
a(5) = 19: 00010, 00011, 01010, 01011, 01100, 01101, 01110, 01111, 10001, 10100, 10101, 10110, 10111, 11010, 11011, 11100, 11101, 11110, 11111.
(End)
MATHEMATICA
tup[n_] := Tuples[{0, 1}, n];
cou[lst_List] := Count[lst, {0, 0, 0}] == Count[lst, {0, 0, 1}];
par[lst_List] := Partition[lst, 3, 1];
a[n_] := a[n] = Map[cou, Map[par, tup[n]]] // Boole // Total;
Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}] (* Robert P. P. McKone, Apr 03 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 11 2009
STATUS
approved