login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205850
[s(k)-s(j)]/4, where the pairs (k,j) are given by A205847 and A205848, and s(k) denotes the (k+1)-st Fibonacci number.
5
1, 3, 2, 5, 4, 2, 8, 13, 22, 21, 19, 17, 34, 58, 57, 55, 53, 36, 94, 93, 91, 89, 72, 36, 152, 144, 246, 233, 399, 398, 396, 394, 377, 341, 305, 644, 610, 1045, 1044, 1042, 1040, 1023, 987, 951, 646, 1691, 1690, 1688, 1686, 1669, 1633, 1597, 1292, 646
OFFSET
1,2
COMMENTS
For a guide to related sequences, see A205840.
EXAMPLE
The first six terms match these differences:
s(4)-s(1) = 5-1 = 4 = 4*1
s(6)-s(1) = 13-1 = 12= 4*3
s(6)-s(4) = 13-5 = 8 = 4*2
s(7)-s(1) = 21-1 = 20 = 4*5
s(7)-s(4) = 21-5 = 16 = 4*4
s(7)-s(6) = 21-13 = 8 = 4*2
MATHEMATICA
s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60;
f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
Table[s[n], {n, 1, 30}]
u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
Table[u[m], {m, 1, z1}] (* A204922 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
c = 4; t = d[c] (* A205846 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205847 *)
Table[j[n], {n, 1, z2}] (* A205848 *)
Table[s[k[n]] - s[j[n]], {n, 1, z2}] (* A205849 *)
Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205850 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 02 2012
STATUS
approved