The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A205847 Numbers k for which 4 divides s(k)-s(j) for some j
 4, 6, 6, 7, 7, 7, 8, 9, 10, 10, 10, 10, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20, 21, 21, 21 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For a guide to related sequences, see A205840. LINKS EXAMPLE The first six terms match these differences: s(4)-s(1) = 5-1 = 4 s(6)-s(1) = 13-1 = 12 s(6)-s(4) = 13-5 = 8 s(7)-s(1) = 21-1 = 20 s(7)-s(4) = 21-5 = 16 s(7)-s(6) = 21-13 = 8 MATHEMATICA s[n_] := s[n] = Fibonacci[n + 1]; z1 = 400; z2 = 60; f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2]; Table[s[n], {n, 1, 30}] u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]] Table[u[m], {m, 1, z1}]     (* A204922 *) v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0] w[n_] := w[n] = Table[v[n, h], {h, 1, z1}] d[n_] := d[n] = Delete[w[n], Position[w[n], 0]] c = 4; t = d[c]    (* A205846 *) k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2] j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2 Table[k[n], {n, 1, z2}]    (* A205847 *) Table[j[n], {n, 1, z2}]    (* A205848 *) Table[s[k[n]] - s[j[n]], {n, 1, z2}] * A205849 *) Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205850 *) CROSSREFS Cf. A204892, A205850. Sequence in context: A035551 A087573 A201235 * A227967 A292672 A018937 Adjacent sequences:  A205844 A205845 A205846 * A205848 A205849 A205850 KEYWORD nonn AUTHOR Clark Kimberling, Feb 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 05:53 EDT 2021. Contains 346367 sequences. (Running on oeis4.)