login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307775
Smallest k > 1 such that A014574(n)*k is in A014574.
2
3, 2, 5, 4, 2, 10, 3, 6, 10, 4, 6, 4, 9, 6, 15, 21, 13, 3, 15, 6, 6, 8, 6, 5, 4, 11, 5, 26, 6, 2, 2, 6, 6, 11, 4, 5, 4, 6, 14, 6, 20, 9, 46, 5, 9, 4, 14, 11, 9, 20, 21, 6, 6, 4, 6, 14, 4, 9, 9, 3, 21, 5, 35, 15, 14, 2, 5, 30, 36, 4, 5, 14, 2, 29, 21, 10, 39, 8, 4, 5, 9, 3
OFFSET
1,1
LINKS
MAPLE
P:= select(isprime, {seq(i, i=3..10^7, 2)}):
A14574:= sort(convert(map(`+`, P, 1) intersect map(`+`, P, -1), list)):
f:= proc(n) local k, v, kv;
v:= A14574[n]:
for k from 2 do
kv:= k*v;
if kv > 10^7 then if isprime(kv-1) and isprime(kv+1) then return k fi
elif member(kv, A14574) then return k
fi
od
end proc:
map(f, [$1..100]); # Robert Israel, Dec 17 2020
MATHEMATICA
twinMidQ[n_] := AllTrue[{-1, 1} + n, PrimeQ]; f[n_] := Module[{k = 2}, While[! twinMidQ[k*n], k++]; k]; f /@ Select[Range[10^3], twinMidQ] (* Amiram Eldar, Jul 05 2019 *)
PROG
(PARI) isok2(n) = isprime(n-1) && isprime(n+1);
k(n) = my(k=2); while (! isok2(n*k), k++); k;
lista(nn) = for (n=1, nn, if (isok2(n), print1(k(n), ", "))); \\ Michel Marcus, Apr 28 2019
CROSSREFS
Cf. A014574.
Sequence in context: A205400 A205850 A204890 * A239680 A128076 A076243
KEYWORD
nonn
AUTHOR
Dmitry Kamenetsky, Apr 28 2019
STATUS
approved