OFFSET
1,1
COMMENTS
The differential equation whose solutions are the Giuga numbers is m' = k*m+1, with k a positive integer. Let us rewrite the equation as m'-1 = k*m and then take the derivative: (m'-1)' = (k*m)' = k'*m + k*m' = k'*m + k*(k*m+1) = (k'+k^2)*m+k.
Let k=1: (m'-1)' = m+1. The solutions of this equation are the Giuga numbers plus pairs of numbers (x,y) for which x' = y+1 and y' = x+1.
A007850 is a subsequence of this sequence.
a(11) > 10^9. - Michel Marcus, Nov 05 2014
a(12) > 10^10. - Giovanni Resta, Jun 04 2016
EXAMPLE
235290' = 282343; (282343 - 1)' = 282342' = 235291 = 235290 + 1, so 235290 is a term.
282342' = 235291; (235291 - 1)' = 235290' = 282343 = 282342 + 1, so 282342 is a term.
MAPLE
with(numtheory);
P:=proc(i)
local a, n, p, pfs;
for n from 1 to i do
pfs:=ifactors(n)[2]; a:=n*add(op(2, p)/op(1, p), p=pfs) ;
pfs:=ifactors(a-1)[2]; a:=(a-1)*add(op(2, p)/op(1, p), p=pfs) ;
if a=n+1 then print(n); fi;
od;
end:
P(10000000);
PROG
(PARI) ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
isok(n) = my(m = ad(n)-1); (m) && ad(m) == n+1; \\ Michel Marcus, Nov 05 2014
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Jan 20 2012
EXTENSIONS
a(11) from Giovanni Resta, Jun 04 2016
STATUS
approved