login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181629
Positive integers k = p_1^{r_1} ... p_n^{r_n} such that sum_{i=1..n} p_i^{-r_i} >= 1 (Non-Hyperbolic Integers).
2
1, 30, 210, 330, 390, 462, 510, 546, 570, 690, 714, 798, 858, 870, 930, 966, 1050, 1110, 1218, 1230, 1290, 1302, 1410, 1470, 1554, 1590, 1722, 1770, 1830, 2010, 2130, 2190, 2310, 2370, 2490, 2670, 2730, 2910, 3030, 3090, 3210, 3270, 3390, 3570, 3630, 3810
OFFSET
1,2
COMMENTS
First odd term greater than 1 is 3234846615. - Robert G. Wilson v, Nov 04 2010
Also numbers n such that A028236(n)/n >= 1. - Klaus Brockhaus, Nov 06 2010
EXAMPLE
a(2) = 30, since 30 = 2*3*5 and 1/2 + 1/3 + 1/5 = 31/30 >= 1.
MATHEMATICA
DeleteCases[ Table[k; A = FactorInteger[k]; If[Sum[1/A[[j]][[1]]^A[[j]][[2]], {j, 1, Length[A]}] >= 1, k, 0], {k, 1, 3900}], 0]
fQ[n_] := Block[{fi = Transpose@ FactorInteger@ n}, Plus @@ (1/(First@fi ^ Last@fi)) >= 1]; Select[Range@ 3900, fQ] (* Robert G. Wilson v, Nov 04 2010 *)
PROG
(Magma) [1] cat [ k: k in [2..4000] | &+[ f[i, 1]^-f[i, 2]: i in [1..#f] ] ge 1 where f is Factorization(k) ]; // Klaus Brockhaus, Nov 06 2010
CROSSREFS
Cf. A028236 (if n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j^k_j). - Klaus Brockhaus, Nov 06 2010
Sequence in context: A280482 A371721 A203617 * A346245 A129499 A286763
KEYWORD
nonn
AUTHOR
Roberto E. Martinez II, Nov 02 2010, Nov 05 2010
STATUS
approved