login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203618
Numbers m such that (m'+1)' = m-1, where m' is the arithmetic derivative of m.
3
1, 2, 6, 42, 104, 120, 165, 245, 272, 561, 1806, 47058, 765625, 1137501, 3874128, 9131793, 2214502422, 52495396602
OFFSET
1,2
COMMENTS
The differential equation whose solutions are the primary pseudoperfect numbers is m' = k*m-1, with k a positive integer. Let us rewrite the equation as m'+1 = k*m and then take the derivative: (m'+1)' = (k*m)' = k'*m + k*m' = k'*m + k*(k*m-1) = (k'+k^2)*m-k. Let k=1: (m'+1)' = m-1. The solutions of this equation are the primary pseudoperfect numbers plus pairs of numbers (x,y) for which x' = y-1 and y' = x-1.
A054377 is a subsequence of this sequence.
a(17) > 10^9. - Michel Marcus, Nov 05 2014
a(19) > 10^11. - Giovanni Resta, Jun 04 2016
EXAMPLE
765625' = 1137500; (1137500 + 1)' = 1137501' = 765624 = 765625 - 1, so 765625 is a term.
1137501' = 765624; (765624 + 1)' = 765625' = 1137500 = 1137501 - 1, so 1137501 is a term.
MAPLE
with(numtheory);
P:=proc(i)
local a, n, p, pfs;
for n from 1 to i do
pfs:=ifactors(n)[2]; a:=n*add(op(2, p)/op(1, p), p=pfs);
pfs:=ifactors(a+1)[2]; a:=(a+1)*add(op(2, p)/op(1, p), p=pfs);
if a=n-1 then print(n); fi;
od;
end:
P(10000000);
MATHEMATICA
A003415[n_]:=If[Abs[n]<2, 0, n*Total[#2/#1&@@@FactorInteger[Abs[n]]]];
Select[Range[1, 100000], A003415[A003415[#]+1]==#-1&] (* Julien Kluge, Jul 08 2016 *)
PROG
(PARI) ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
isok(n) = ad(ad(n)+1) == n-1; \\ Michel Marcus, Nov 05 2014
CROSSREFS
Sequence in context: A280043 A309813 A033936 * A334883 A098814 A272177
KEYWORD
nonn,more,changed
AUTHOR
Paolo P. Lava, Jan 20 2012
EXTENSIONS
a(17)-a(18) from Giovanni Resta, Jun 04 2016
STATUS
approved