Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Dec 17 2024 18:30:37
%S 30,210,246,858,1722,66198,235290,282342,1929378,1976394,2214408306
%N Numbers m such that (m'-1)' = m+1, where m' denotes the arithmetic derivative of m.
%C The differential equation whose solutions are the Giuga numbers is m' = k*m+1, with k a positive integer. Let us rewrite the equation as m'-1 = k*m and then take the derivative: (m'-1)' = (k*m)' = k'*m + k*m' = k'*m + k*(k*m+1) = (k'+k^2)*m+k.
%C Let k=1: (m'-1)' = m+1. The solutions of this equation are the Giuga numbers plus pairs of numbers (x,y) for which x' = y+1 and y' = x+1.
%C A007850 is a subsequence of this sequence.
%C a(11) > 10^9. - _Michel Marcus_, Nov 05 2014
%C a(12) > 10^10. - _Giovanni Resta_, Jun 04 2016
%e 235290' = 282343; (282343 - 1)' = 282342' = 235291 = 235290 + 1, so 235290 is a term.
%e 282342' = 235291; (235291 - 1)' = 235290' = 282343 = 282342 + 1, so 282342 is a term.
%p with(numtheory);
%p P:=proc(i)
%p local a,n,p,pfs;
%p for n from 1 to i do
%p pfs:=ifactors(n)[2]; a:=n*add(op(2,p)/op(1,p),p=pfs) ;
%p pfs:=ifactors(a-1)[2]; a:=(a-1)*add(op(2,p)/op(1,p),p=pfs) ;
%p if a=n+1 then print(n); fi;
%p od;
%p end:
%p P(10000000);
%o (PARI) ad(n) = sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i]);
%o isok(n) = my(m = ad(n)-1); (m) && ad(m) == n+1; \\ _Michel Marcus_, Nov 05 2014
%Y Cf. A007850, A185222, A203618.
%K nonn,more
%O 1,1
%A _Paolo P. Lava_, Jan 20 2012
%E a(11) from _Giovanni Resta_, Jun 04 2016