login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203530
a(n) = Product_{1 <= i < j <= n} (c(i) + c(j)); c = A002808 = composite numbers.
4
1, 10, 1680, 5569200, 426645273600, 1135354270482432000, 129053267560513803386880000, 556394398742051964595520667648000000, 99449133623220179596974346585642106880000000000
OFFSET
1,2
COMMENTS
Each term divides its successor, as in A203530.
It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n); as in A203533.
See A093883 for a guide to related sequences.
MAPLE
c:= proc(n) option remember; local k; if n=1 then 4
else for k from 1+c(n-1) while isprime(k) do od; k fi
end:
a:= n-> mul(mul(c(i)+c(j), i=1..j-1), j=2..n):
seq(a(n), n=1..10); # Alois P. Heinz, Jul 23 2017
MATHEMATICA
t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
composite = Rest[Rest[Union[t]]] (* A002808 *)
f[j_] := composite[[j]]; z = 20;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203530 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203532 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203533 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 03 2012
EXTENSIONS
Name edited by Alois P. Heinz, Jul 23 2017
STATUS
approved