Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jul 23 2017 13:44:53
%S 1,10,1680,5569200,426645273600,1135354270482432000,
%T 129053267560513803386880000,556394398742051964595520667648000000,
%U 99449133623220179596974346585642106880000000000
%N a(n) = Product_{1 <= i < j <= n} (c(i) + c(j)); c = A002808 = composite numbers.
%C Each term divides its successor, as in A203530.
%C It is conjectured that each term is divisible by the corresponding superfactorial, A000178(n); as in A203533.
%C See A093883 for a guide to related sequences.
%p c:= proc(n) option remember; local k; if n=1 then 4
%p else for k from 1+c(n-1) while isprime(k) do od; k fi
%p end:
%p a:= n-> mul(mul(c(i)+c(j), i=1..j-1), j=2..n):
%p seq(a(n), n=1..10); # _Alois P. Heinz_, Jul 23 2017
%t t = Table[If[PrimeQ[k], 0, k], {k, 1, 100}];
%t composite = Rest[Rest[Union[t]]] (* A002808 *)
%t f[j_] := composite[[j]]; z = 20;
%t v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
%t d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
%t Table[v[n], {n, 1, z}] (* A203530 *)
%t Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203532 *)
%t Table[v[n]/d[n], {n, 1, 20}] (* A203533 *)
%Y Cf. A002808, A203418, A203532, A203533.
%K nonn
%O 1,2
%A _Clark Kimberling_, Jan 03 2012
%E Name edited by _Alois P. Heinz_, Jul 23 2017