login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203418
Vandermonde determinant of the first n composite numbers (A002808).
6
1, 2, 16, 240, 11520, 13271040, 254803968000, 15892123484160000, 5126163351050649600000, 89288743527804466888704000000, 50689719717698351557731837542400000000, 125765178831579421305165126665125232640000000000
OFFSET
1,2
COMMENTS
Each term divides its successor, as in A203419, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203420.
LINKS
MATHEMATICA
composite = Select[Range[100], CompositeQ]; (* A002808 *)
z = 20;
f[j_]:= composite[[j]];
v[n_]:= Product[Product[f[k] - f[j], {j, 1, k-1}], {k, 2, n}];
d[n_]:= Product[(i - 1)!, {i, 1, n}];
Table[v[n], {n, z}] (* this sequence *)
Table[v[n+1]/v[n], {n, z}] (* A203419 *)
Table[v[n]/d[n], {n, z}] (* A203420 *)
PROG
(Magma)
A002808:=[n: n in [2..250] | not IsPrime(n)];
a:= func< n | n eq 0 select 1 else (&*[(&*[A002808[k+2] - A002808[j+1]: j in [0..k]]): k in [0..n-1]]) >;
[a(n): n in [0..20]]; // G. C. Greubel, Feb 24 2024
(SageMath)
A002808=[n for n in (2..250) if not is_prime(n)]
def a(n): return product(product( A002808[k+1] - A002808[j] for j in range(k+1)) for k in range(n))
[a(n) for n in range(15)] # G. C. Greubel, Feb 24 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 02 2012
STATUS
approved