login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203417
a(n) = A203415(n)/A000178(n).
5
1, 3, 15, 140, 700, 2520, 44352, 2196480, 47567520, 634233600, 51753461760, 13984935444480, 1448751906201600, 82605199597240320, 32797812715211980800, 5296846753506734899200, 483765735240908144640000, 28985693293514522492928000
OFFSET
1,2
LINKS
R. Chapman, A polynomial taking integer values, Mathematics Magazine 29 (1996), p. 121.
MATHEMATICA
z=20;
nonprime = Join[{1}, Select[Range[250], CompositeQ]]; (* A018252 *)
f[j_]:= nonprime[[j]];
v[n_]:= Product[Product[f[k] - f[j], {j, 1, k-1}], {k, 2, n}];
d[n_]:= Product[(i-1)!, {i, 1, n}];
Table[v[n], {n, 1, z}] (* A203415 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203416 *)
Table[v[n]/d[n], {n, 1, z}] (* this sequence *)
PROG
(Magma)
A018252:=[n : n in [1..250] | not IsPrime(n) ];
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
v:= func< n | n eq 1 select 1 else (&*[(&*[A018252[k+2] - A018252[j+1]: j in [0..k]]): k in [0..n-2]]) >;
[v(n)/BarnesG(n+1): n in [1..30]]; // G. C. Greubel, Feb 29 2024
(SageMath)
A018252=[n for n in (1..250) if not is_prime(n)]
def BarnesG(n): return product(factorial(j) for j in range(1, n-1))
def v(n): return product(product(A018252[k-1]-A018252[j-1] for j in range(1, k)) for k in range(2, n+1))
[v(n)/BarnesG(n+1) for n in range(1, 31)] # G. C. Greubel, Feb 29 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2012
STATUS
approved