login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179471
G.f. satisfies: A(x) = exp( Sum_{n>=1} A(2^n*x^n)*x^n/n ).
0
1, 1, 3, 15, 139, 2387, 79115, 5148411, 664332843, 170744863371, 87593505706987, 89783692196468907, 183966962290186844267, 753712824966410639243755, 6175169543791440589003293035, 101180154484297968338398947674219
OFFSET
0,3
COMMENTS
Compare to g.f. of A157675: G(x) = exp( Sum_{n>=1} G(2^n*x)^n*x^n/n ).
FORMULA
Limit a(n) / 2^(n*(n-1)/2) = 2.494435637496531683539561928813688982084486211124...
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 15*x^3 + 139*x^4 + 2387*x^5 +...
log(A(x)) = A(2x) + A(4x^2)*x^2/2 + A(8x^3)*x^3/3 + A(16x^4)*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, subst(A, x, 2^m*x^m+x*O(x^n))*x^m/m))); polcoeff(A, n)}
CROSSREFS
Cf. A157675.
Sequence in context: A005816 A179470 A270524 * A203417 A086228 A288456
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 15 2010
STATUS
approved