login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179469
G.f. satisfies A(x) = exp( Sum_{n>=1} 2^n*A(x^n)*x^n/n ).
5
1, 2, 8, 32, 140, 624, 2928, 14048, 69200, 347040, 1768120, 9122144, 47572128, 250341312, 1327718272, 7089595552, 38082093120, 205638343552, 1115635692576, 6078058719232, 33239328613648, 182402290944576, 1004073853702320
OFFSET
0,2
LINKS
FORMULA
From Seiichi Manyama, Jun 02 2023: (Start)
A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-2*x^(k+1))^a(k).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d * 2^(k/d) * a(d-1) ) * a(n-k). (End)
EXAMPLE
G.f.: A(x) = 1 + 2*x + 8*x^2 + 32*x^3 + 140*x^4 + 624*x^5 + +...
log(A(x)) = 2*A(x) + 4*A(x^2)*x^2/2 + 8*A(x^3)*x^3/3 + 16*A(x^4)*x^4/4 +...
PROG
(PARI) {a(n)=my(A=1+x); for(i=1, n, A=exp(sum(m=1, n, subst(A, x, x^m+x*O(x^n))*2^m*x^m/m))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A150848 A150849 A150850 * A150851 A150852 A150853
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 15 2010
STATUS
approved