Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 02 2023 10:19:21
%S 1,2,8,32,140,624,2928,14048,69200,347040,1768120,9122144,47572128,
%T 250341312,1327718272,7089595552,38082093120,205638343552,
%U 1115635692576,6078058719232,33239328613648,182402290944576,1004073853702320
%N G.f. satisfies A(x) = exp( Sum_{n>=1} 2^n*A(x^n)*x^n/n ).
%H Seiichi Manyama, <a href="/A179469/b179469.txt">Table of n, a(n) for n = 0..1000</a>
%F From _Seiichi Manyama_, Jun 02 2023: (Start)
%F A(x) = Sum_{k>=0} a(k) * x^k = 1/Product_{k>=0} (1-2*x^(k+1))^a(k).
%F a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d * 2^(k/d) * a(d-1) ) * a(n-k). (End)
%e G.f.: A(x) = 1 + 2*x + 8*x^2 + 32*x^3 + 140*x^4 + 624*x^5 + +...
%e log(A(x)) = 2*A(x) + 4*A(x^2)*x^2/2 + 8*A(x^3)*x^3/3 + 16*A(x^4)*x^4/4 +...
%o (PARI) {a(n)=my(A=1+x);for(i=1,n,A=exp(sum(m=1,n,subst(A,x,x^m+x*O(x^n))*2^m*x^m/m)));polcoeff(A,n)}
%Y Cf. A054598, A179470.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jul 15 2010