login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203696
v(n+1)/v(n), where v=A203695.
2
10, 1665, 1497224, 4485885300, 34184139841800, 557745681594010000, 17295475176752223859200, 934164847784800073360250000, 82223581117536608232019062500000, 11191248877703366469751902789287961600
OFFSET
1,1
COMMENTS
See A093883 for a discussion and guide to related sequences.
FORMULA
a(n) ~ (1 + sqrt(2))^((2*n+3)/sqrt(2)) * exp(Pi*(2*n+3)/(2*sqrt(2)) - 4*n) * n^(4*n) / 2^(n-1). - Vaclav Kotesovec, Nov 21 2023
MATHEMATICA
f[j_] := j (j + 1)/2; z = 11;
u[n_] := Product[f[j]^2 + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203695 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203696 *)
Table[Product[k^2*(k+1)^2/4 + (n+1)^2*(n+2)^2/4, {k, 1, n}], {n, 1, 10}] (* Vaclav Kotesovec, Nov 21 2023 *)
CROSSREFS
Sequence in context: A160236 A204466 A117523 * A203530 A232594 A194793
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 04 2012
STATUS
approved