This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203171 Alternating sum of the fourth powers of the first n even-indexed Fibonacci numbers. 4
 0, -1, 80, -4016, 190465, -8960160, 421021536, -19779631105, 929225609456, -43653851217680, 2050801968082945, -96344039926706496, 4526119083346841280, -212631252937414840321, 9989142769386670981520, -469277078911056723578480 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Natural bilateral extension (brackets mark index 0): ..., 8960160, -190465, 4016, -80, 1, 0, [0], -1, 80, -4016, 190465, -8960160, ...  That is, a(-n) = -a(n-1). LINKS G. C. Greubel, Table of n, a(n) for n = 0..500 R. S. Melham, Alternating sums of fourth powers of Fibonacci and Lucas numbers, The Fibonacci Quarterly, 38(3):254-259, June-July 2000. Index entries for linear recurrences with constant coefficients, signature (-55,-385,-385,-55,-1) FORMULA Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n). a(n) = Sum_{k=1..n} (-1)^k * F(2*k)^4. Closed form: a(n) = (-1)^n (1/525)(3 L(8n+4) - 28 L(4n+2) + 63). Factored closed form: a(n) = (-1)^n (1/21) F(2n) F(2n+2) (3 F(2n+1)^2 - 5). Alternate factored closed form: a(n) = (-1)^n (1/21) F(2n) F(2n+2) (3 F(2n) F(2n+2) - 2). Recurrence: a(n) + 55 a(n-1) + 385 a(n-2) + 385 a(n-3) + 55 a(n-4) + a(n-5) = 0. G.f.: A(x) = (-x + 25 x^2 - x^3)/(1 + 55 x + 385 x^2 + 385 x^3 + 55 x^4 + x^5) = -x(1 - 25 x + x^2)/((1 + x)(1 + 7 x + x^2)(1 + 47 x + x^2)). MAPLE with(combinat): A203171:=n->(-1)^n*(1/21)*fibonacci(2*n)*fibonacci(2*n+2)*(3*fibonacci(2*n+1)^2 - 5): seq(A203171(n), n=0..20); # Wesley Ivan Hurt, Jan 16 2017 MATHEMATICA a[n_Integer] := (-1)^n (1/525)(3*LucasL[8n+4] - 28*LucasL[4n+2] + 63); Table[a[n], {n, 0, 20}] PROG (PARI) a(n) = sum(k=1, n, (-1)^k*fibonacci(2*k)^4); \\ Michel Marcus, Apr 16 2016 CROSSREFS Cf. A203169, A203170, A203172. Cf. A156088, A163201. Sequence in context: A264372 A004390 A247861 * A076004 A216987 A283102 Adjacent sequences:  A203168 A203169 A203170 * A203172 A203173 A203174 KEYWORD sign,easy AUTHOR Stuart Clary, Dec 30 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 19:22 EST 2019. Contains 329809 sequences. (Running on oeis4.)