login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203168
Positions of 1 in the continued fraction expansion of Pi.
1
4, 6, 7, 8, 10, 12, 15, 16, 21, 24, 25, 29, 35, 41, 42, 45, 47, 51, 53, 54, 56, 57, 58, 60, 61, 63, 64, 66, 68, 69, 74, 79, 82, 84, 87, 89, 92, 94, 96, 98, 99, 104, 108, 113, 115, 116, 121, 125, 126, 134, 136, 138, 141, 144, 148, 149, 150, 154, 157, 158, 160
OFFSET
1,1
COMMENTS
In the Gauss-Kuzmin distribution, 1 appears with probability log_2(4/3) = 41.5037...%. Thus the n-th appearance of 1 in the continued fraction of a real number chosen uniformly from [0, 1) will be, with probability 1, n / (log_2(4/3)) + O(sqrt(n)). Does this sequence have the same asymptotic? - Charles R Greathouse IV, Dec 30 2011
FORMULA
A001203(a(n)) = 1.
MATHEMATICA
Flatten[Position[ContinuedFraction[Pi, 160], 1]]
PROG
(PARI) v=contfrac(Pi); for(i=1, #v, if(v[i]==1, print1(i", "))) \\ Charles R Greathouse IV, Dec 30 2011
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Ben Branman, Dec 29 2011
STATUS
approved