login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A203162 (n-1)-st elementary symmetric function of the first n terms of (1,2,3,1,2,3,1,2,3,...). 6
1, 3, 11, 17, 40, 132, 168, 372, 1188, 1404, 3024, 9504, 10800, 22896, 71280, 79056, 165888, 513216, 559872, 1166400, 3592512, 3872448, 8024832, 24634368, 26313984, 54307584, 166281984, 176359680, 362797056, 1108546560, 1169012736 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,12,0,0,-36).

FORMULA

a(n) = 12*a(n-3)-36*a(n-6). - Clark Kimberling, Aug 18 2012

G.f.: x*(1 + 3*x + 11*x^2 + 5*x^3 + 4*x^4)/(1 - 6*x^3)^2. - Clark Kimberling, Aug 18 2012; corrected by Georg Fischer, May 10 2019

EXAMPLE

Let esf abbreviate "elementary symmetric function". Then

0th esf of {1}:  1;

1st esf of {1,2}:  1+2=3;

2nd esf of {1,2,3} is 1*2+1*3+2*3=11.

MATHEMATICA

f[k_] := 1 + Mod[k + 2, 3]; t[n_] := Table[f[k], {k, n}]; a[n_] := SymmetricPolynomial[n - 1, t[n]]; Table[a[n], {n, 40}] (* A203162 *)

Rest[CoefficientList[Series[x*(1 + 3*x + 11*x^2 + 5*x^3 + 4*x^4)/(1 - 6*x^3)^2, {x, 0, 30}], x]] (* Vaclav Kotesovec, May 10 2019 *)

PROG

(PARI) my(x='x+O('x^40)); Vec(x*(1+3*x+11*x^2+5*x^3+4*x^4)/(1-6*x^3)^2) \\ G. C. Greubel, May 10 2019

(MAGMA) I:=[1, 3, 11, 17, 40, 132]; [n le 6 select I[n] else 12*Self(n-3) -36*Self(n-6): n in [1..40]]; // G. C. Greubel, May 10 2019

(Sage) a=(x*(1+3*x+11*x^2+5*x^3+4*x^4)/(1-6*x^3)^2).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 10 2019

(GAP) a:=[1, 3, 11, 17, 40, 132];; for n in [7..40] do a[n]:=12*a[n-1]-36*a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 10 2019

CROSSREFS

Cf. A010882, A203160, A203161.

Sequence in context: A302872 A023865 A024592 * A240084 A100567 A270225

Adjacent sequences:  A203159 A203160 A203161 * A203163 A203164 A203165

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Dec 29 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 09:34 EST 2021. Contains 349543 sequences. (Running on oeis4.)