OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,12,0,0,-36).
FORMULA
G.f.: x*(36*x^4+16*x^3+11*x^2+5*x+1) / (6*x^3-1)^2. - Colin Barker, Aug 15 2014
EXAMPLE
Let esf abbreviate "elementary symmetric function". Then
0th esf of {2}: 1,
1st esf of {2,3}: 2+3=5,
2nd esf of {2,3,1} is 2*3+2*1+3*1=11.
MATHEMATICA
f[k_] := 1 + Mod[k, 3]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 33}] (* A203160 *)
LinearRecurrence[{0, 0, 12, 0, 0, -36}, {1, 5, 11, 28, 96, 132}, 40] (* Harvey P. Dale, Mar 19 2016 *)
PROG
(PARI) Vec(x*(36*x^4+16*x^3+11*x^2+5*x+1)/(6*x^3-1)^2 + O(x^100)) \\ Colin Barker, Aug 15 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 29 2011
STATUS
approved