login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203160
(n-1)-st elementary symmetric function of the first n terms of (2,3,1,2,3,1,2,3,1,...)=A010882.
3
1, 5, 11, 28, 96, 132, 300, 972, 1188, 2592, 8208, 9504, 20304, 63504, 71280, 150336, 466560, 513216, 1073088, 3312576, 3592512, 7464960, 22954752, 24634368, 50948352, 156204288, 166281984, 342641664, 1048080384, 1108546560, 2277559296
OFFSET
1,2
FORMULA
G.f.: x*(36*x^4+16*x^3+11*x^2+5*x+1) / (6*x^3-1)^2. - Colin Barker, Aug 15 2014
EXAMPLE
Let esf abbreviate "elementary symmetric function". Then
0th esf of {2}: 1,
1st esf of {2,3}: 2+3=5,
2nd esf of {2,3,1} is 2*3+2*1+3*1=11.
MATHEMATICA
f[k_] := 1 + Mod[k, 3]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 33}] (* A203160 *)
LinearRecurrence[{0, 0, 12, 0, 0, -36}, {1, 5, 11, 28, 96, 132}, 40] (* Harvey P. Dale, Mar 19 2016 *)
PROG
(PARI) Vec(x*(36*x^4+16*x^3+11*x^2+5*x+1)/(6*x^3-1)^2 + O(x^100)) \\ Colin Barker, Aug 15 2014
CROSSREFS
Sequence in context: A374653 A041671 A215221 * A095053 A291279 A182379
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 29 2011
STATUS
approved