login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202462
a(n) = Sum_{j=1..n} Sum_{i=1..n} F(i,j), where F is the Fibonacci fusion array of A202453.
5
1, 5, 21, 70, 214, 614, 1703, 4619, 12363, 32812, 86636, 228012, 598893, 1571089, 4118305, 10790194, 28262594, 74014290, 193807315, 507451415, 1328617751, 3478516440, 9107117016, 23843134680, 62422772569, 163425968669, 427856404653
OFFSET
1,2
COMMENTS
Partial sums of A188516.
FORMULA
G.f.: x*(1+2*x^2-x^3)/((1+x)*(1-3*x+x^2)*(1-x-x^2)*(1-x)^2). - R. J. Mathar, Dec 20 2011
a(n) = Fibonacci(n+2)*Fibonacci(n+3) - 2*Fibonacci(n+4) + n + 4. - G. C. Greubel, Jul 23 2019
MATHEMATICA
(* First program *)
n = 28;
Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
Table[Fibonacci[k], {k, 1, n}]];
P = Transpose[Q]; F = P.Q;
a[m_] := Sum[F[[i]][[j]], {i, 1, m}, {j, 1, m}]
Table[a[m], {m, 1, n}] (* A202462 *)
Table[a[m] - a[m - 1], {m, 1, n}] (* A188516 *)
(* Additional programs *)
LinearRecurrence[{5, -6, -4, 10, -2, -3, 1}, {1, 5, 21, 70, 214, 614, 1703}, 30] (* Harvey P. Dale, Jul 23 2015 *)
With[{F=Fibonacci}, Table[F[n+2]*F[n+3] -2*F[n+4] +n+4, {n, 30}]] (* G. C. Greubel, Jul 23 2019 *)
PROG
(PARI) vector(30, n, f=fibonacci; f(n+2)*f(n+3) -2*f(n+4) +n+4) \\ G. C. Greubel, Jul 23 2019
(Magma) F:=Fibonacci; [F(n+2)*F(n+3) -2*F(n+4) +n+4: n in [1..30]]; // G. C. Greubel, Jul 23 2019
(Sage) f=fibonacci; [f(n+2)*f(n+3)-2*f(n+4) +n+4 for n in (1..30)] # G. C. Greubel, Jul 23 2019
(GAP) F:=Fibonacci;; List([1..30], n-> F(n+2)*F(n+3) -2*F(n+4) +n+4); # G. C. Greubel, Jul 23 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 19 2011
STATUS
approved