Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:46:01
%S 1,5,21,70,214,614,1703,4619,12363,32812,86636,228012,598893,1571089,
%T 4118305,10790194,28262594,74014290,193807315,507451415,1328617751,
%U 3478516440,9107117016,23843134680,62422772569,163425968669,427856404653
%N a(n) = Sum_{j=1..n} Sum_{i=1..n} F(i,j), where F is the Fibonacci fusion array of A202453.
%C Partial sums of A188516.
%H G. C. Greubel, <a href="/A202462/b202462.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (5,-6,-4,10,-2,-3,1).
%F G.f.: x*(1+2*x^2-x^3)/((1+x)*(1-3*x+x^2)*(1-x-x^2)*(1-x)^2). - _R. J. Mathar_, Dec 20 2011
%F a(n) = Fibonacci(n+2)*Fibonacci(n+3) - 2*Fibonacci(n+4) + n + 4. - _G. C. Greubel_, Jul 23 2019
%t (* First program *)
%t n = 28;
%t Q = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[
%t Table[Fibonacci[k], {k, 1, n}]];
%t P = Transpose[Q]; F = P.Q;
%t a[m_] := Sum[F[[i]][[j]], {i, 1, m}, {j, 1, m}]
%t Table[a[m], {m, 1, n}] (* A202462 *)
%t Table[a[m] - a[m - 1], {m, 1, n}] (* A188516 *)
%t (* Additional programs *)
%t LinearRecurrence[{5,-6,-4,10,-2,-3,1},{1,5,21,70,214,614,1703},30] (* _Harvey P. Dale_, Jul 23 2015 *)
%t With[{F=Fibonacci}, Table[F[n+2]*F[n+3] -2*F[n+4] +n+4, {n,30}]] (* _G. C. Greubel_, Jul 23 2019 *)
%o (PARI) vector(30, n, f=fibonacci; f(n+2)*f(n+3) -2*f(n+4) +n+4) \\ _G. C. Greubel_, Jul 23 2019
%o (Magma) F:=Fibonacci; [F(n+2)*F(n+3) -2*F(n+4) +n+4: n in [1..30]]; // _G. C. Greubel_, Jul 23 2019
%o (Sage) f=fibonacci; [f(n+2)*f(n+3)-2*f(n+4) +n+4 for n in (1..30)] # _G. C. Greubel_, Jul 23 2019
%o (GAP) F:=Fibonacci;; List([1..30], n-> F(n+2)*F(n+3) -2*F(n+4) +n+4); # _G. C. Greubel_, Jul 23 2019
%Y Cf. A000045, A188616, A202451.
%K nonn
%O 1,2
%A _Clark Kimberling_, Dec 19 2011