|
|
A202463
|
|
First number of divisor symmetry n: d(n-k) = d(n+k) for 1 <= k <= n, but d(n-k-1) != d(n+k+1).
|
|
1
|
|
|
4, 9, 216, 30, 20376, 432, 18000, 13338864, 15194736, 866452464, 5175273600, 35399473200
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
3*10^11 < a(13) <= 1245273287760. a(14) = 72462882816. - Donovan Johnson, Dec 25 2011
|
|
LINKS
|
Table of n, a(n) for n=1..12.
|
|
EXAMPLE
|
8 and 10 have 4 divisors each, 7 and 11 have 2 divisors each, but 6 and 12 have different numbers of divisors; thus 9 has divisor symmetry 2. Since no smaller number has this, a(2) = 9.
|
|
PROG
|
(PARI) a(n)=my(k=n); while(k++, for(i=1, n, if(numdiv(k-i)!=numdiv(k+i), next(2))); if(numdiv(k-n-1)==numdiv(k+n+1), next); return(k))
|
|
CROSSREFS
|
Cf. A093492, A006558.
Sequence in context: A029999 A006280 A290158 * A286322 A318615 A030074
Adjacent sequences: A202460 A202461 A202462 * A202464 A202465 A202466
|
|
KEYWORD
|
nonn,hard
|
|
AUTHOR
|
Charles R Greathouse IV, Dec 19 2011
|
|
EXTENSIONS
|
a(11) from Donovan Johnson, Dec 20 2011
a(12) from Donovan Johnson, Dec 25 2011
|
|
STATUS
|
approved
|
|
|
|