

A202463


First number of divisor symmetry n: d(nk) = d(n+k) for 1 <= k <= n, but d(nk1) != d(n+k+1).


1



4, 9, 216, 30, 20376, 432, 18000, 13338864, 15194736, 866452464, 5175273600, 35399473200
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

3*10^11 < a(13) <= 1245273287760. a(14) = 72462882816.  Donovan Johnson, Dec 25 2011


LINKS

Table of n, a(n) for n=1..12.


EXAMPLE

8 and 10 have 4 divisors each, 7 and 11 have 2 divisors each, but 6 and 12 have different numbers of divisors; thus 9 has divisor symmetry 2. Since no smaller number has this, a(2) = 9.


PROG

(PARI) a(n)=my(k=n); while(k++, for(i=1, n, if(numdiv(ki)!=numdiv(k+i), next(2))); if(numdiv(kn1)==numdiv(k+n+1), next); return(k))


CROSSREFS

Cf. A093492, A006558.
Sequence in context: A029999 A006280 A290158 * A286322 A318615 A030074
Adjacent sequences: A202460 A202461 A202462 * A202464 A202465 A202466


KEYWORD

nonn,hard


AUTHOR

Charles R Greathouse IV, Dec 19 2011


EXTENSIONS

a(11) from Donovan Johnson, Dec 20 2011
a(12) from Donovan Johnson, Dec 25 2011


STATUS

approved



