login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099899
Multiplies by 4 and shifts right under the XOR BINOMIAL transform (A099898).
2
1, 5, 21, 69, 277, 1349, 5141, 16453, 65813, 329029, 1381397, 4538437, 18088213, 88081733, 335549461, 1073758277, 4295033109, 21475165509, 90195694613, 296357281861, 1189724029205, 5793998964037, 22080762418197, 70666170679365
OFFSET
0,2
COMMENTS
Equals the XOR BINOMIAL transform of A099898. Also, equals the main diagonal of the XOR difference triangle A099897, in which the central terms of the rows form the powers of 4. See A099884 for the definitions of XOR difference triangle and the XOR BINOMIAL transform.
FORMULA
a(n) = SumXOR_{k=0..n} (C(n-k+[k/2], [k/2])mod 2)*2^k for n>=0. a(n) = SumXOR_{i=0..n} (C(n, i)mod 2)*A099898(n-i), where SumXOR is the analog of summation under the binary XOR operation and C(i, j)mod 2 = A047999(i, j).
PROG
(PARI) {a(n)=local(B); B=0; for(k=0, n, B=bitxor(B, binomial(n-k+k\2, k\2)%2*4^k)); B}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 30 2004
STATUS
approved