login
A099897
XOR difference triangle, read by rows, of A099898 (in leftmost column) such that the main diagonal equals A099898 shift left and divided by 4.
2
1, 4, 5, 20, 16, 21, 84, 64, 80, 69, 276, 320, 256, 336, 277, 1108, 1344, 1024, 1280, 1104, 1349, 5396, 4416, 5120, 4096, 5376, 4432, 5141, 20564, 17728, 21504, 16384, 20480, 17664, 21584, 16453, 65812, 86336, 70656, 81920, 65536, 86016, 70912
OFFSET
0,2
COMMENTS
Central terms of rows equal powers of 4: T(n,[n/2]) = 4^n for n>=0. The leftmost column is A099898. The diagonal forms A099899 and equals the XOR BINOMIAL transform of A099898. See A099884 for the definitions of XOR difference triangle and the XOR BINOMIAL transform.
FORMULA
T(n, [n/2]) = 4^n. T(n+1, 0) = 4*T(n, n) (n>=0); T(0, 0)=1; T(n, k) = T(n, k-1) XOR T(n-1, k-1) for n>k>0. T(n, k) = SumXOR_{i=0..k} (C(k, i)mod 2)*T(n-i, 0), where SumXOR is the analog of summation under the binary XOR operation and C(k, i)mod 2 = A047999(k, i).
EXAMPLE
Rows begin:
[_1],
[_4,5],
[20,_16,21],
[84,_64,80,69],
[276,320,_256,336,277],
[1108,1344,_1024,1280,1104,1349],
[5396,4416,5120,_4096,5376,4432,5141],
[20564,17728,21504,_16384,20480,17664,21584,16453],
[65812,86336,70656,81920,_65536,86016,70912,82256,65813],...
notice that the column terms equal 4 times the diagonal (with offset), and that the central terms in the rows form the powers of 4.
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(k==0, if(n==0, 1, 4*T(n-1, n-1)), bitxor(T(n, k-1), T(n-1, k-1))); )
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 30 2004
STATUS
approved