OFFSET
0,2
COMMENTS
Compare to the q-series identity:
1/P(x)^3 = Sum_{n>=0} (-1)^n*(2*n+1) * x^(n*(n+1)/2),
where P(x) is the partition function (g.f. of A000041).
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
a(5*n+4) == 0 (mod 5).
Self-convolution cube of A202437.
Conjectures: a(25*n+24) == 0 (mod 25) (checked up to n = 50) and a(7*n+5) == 0 (mod 7) (checked up to n = 200). - Peter Bala, Feb 26 2021
EXAMPLE
G.f.: A(x) = 1 + 9*x + 162*x^2 + 3537*x^3 + 81405*x^4 + 1944243*x^5 +...
where
1/A(x)^3 = 1 - 27*x - 405*x^3 + 5103*x^6 + 59049*x^10 - 649539*x^15 - 6908733*x^21 +...+ 9^n*(2*n+1)*(-x)^(n*(n+1)/2) +...
MATHEMATICA
nmax = 18;
Sum[9^n (2n+1)(-x)^(n(n+1)/2), {n, 0, nmax}]^(-1/3) + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Sep 09 2018 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, sqrtint(2*n+1), 9^m*(2*m+1)*(-x)^(m*(m+1)/2)+x*O(x^n))^(-1/3), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2011
STATUS
approved