login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202438
G.f.: A(x) = ( Sum_{n>=0} 9^n*(2*n+1) * (-x)^(n*(n+1)/2) )^(-1/3).
2
1, 9, 162, 3537, 81405, 1944243, 47615121, 1186699005, 29960950842, 764012506770, 19637356382712, 507996422180784, 13211600995751697, 345145619340179829, 9051411187977957135, 238160821447956629934, 6284647075107225737511, 166263704846500625494533
OFFSET
0,2
COMMENTS
Compare to the q-series identity:
1/P(x)^3 = Sum_{n>=0} (-1)^n*(2*n+1) * x^(n*(n+1)/2),
where P(x) is the partition function (g.f. of A000041).
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
a(5*n+4) == 0 (mod 5).
Self-convolution cube of A202437.
Conjectures: a(25*n+24) == 0 (mod 25) (checked up to n = 50) and a(7*n+5) == 0 (mod 7) (checked up to n = 200). - Peter Bala, Feb 26 2021
EXAMPLE
G.f.: A(x) = 1 + 9*x + 162*x^2 + 3537*x^3 + 81405*x^4 + 1944243*x^5 +...
where
1/A(x)^3 = 1 - 27*x - 405*x^3 + 5103*x^6 + 59049*x^10 - 649539*x^15 - 6908733*x^21 +...+ 9^n*(2*n+1)*(-x)^(n*(n+1)/2) +...
MATHEMATICA
nmax = 18;
Sum[9^n (2n+1)(-x)^(n(n+1)/2), {n, 0, nmax}]^(-1/3) + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Sep 09 2018 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, sqrtint(2*n+1), 9^m*(2*m+1)*(-x)^(m*(m+1)/2)+x*O(x^n))^(-1/3), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2011
STATUS
approved