The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202210 G.f.: A(x) = ( Sum_{n>=0} 3^n*(2*n+1) * x^(n*(n+1)/2) )^(1/3). 3
 1, 3, -9, 60, -360, 2457, -18036, 138429, -1093500, 8833140, -72622224, 605563452, -5108366277, 43512281460, -373690245420, 3232056818511, -28126143258444, 246080268205092, -2163254305208580, 19097478037041840, -169235311045503708, 1504837859547132468 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to the q-series identity: eta(x)^3 = Sum_{n>=0} (-1)^n*(2*n+1) * x^(n*(n+1)/2), where eta(x) is the Dedekind eta(q) function without the q^(1/24) factor. LINKS Table of n, a(n) for n=0..21. FORMULA Conjecture: a(5*n+4) == 0 (mod 5) (checked up to n = 200). - Peter Bala, Feb 26 2021 EXAMPLE G.f.: A(x) = 1 + 3*x - 9*x^2 + 60*x^3 - 360*x^4 + 2457*x^5 - 18036*x^6 +... where A(x)^3 = 1 + 9*x + 45*x^3 + 189*x^6 + 729*x^10 + 2673*x^15 + 9477*x^21 +...+ 3^n*(2*n+1)*x^(n*(n+1)/2) +... PROG (PARI) {a(n)=polcoeff(sum(m=0, sqrtint(2*n+1), 3^m*(2*m+1)*(x)^(m*(m+1)/2)+x*O(x^n))^(1/3), n)} CROSSREFS Cf. A193236. Sequence in context: A018504 A340389 A140812 * A243425 A018513 A143761 Adjacent sequences: A202207 A202208 A202209 * A202211 A202212 A202213 KEYWORD sign AUTHOR Paul D. Hanna, Dec 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 01:58 EST 2023. Contains 367594 sequences. (Running on oeis4.)