Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Feb 27 2021 21:30:15
%S 1,9,162,3537,81405,1944243,47615121,1186699005,29960950842,
%T 764012506770,19637356382712,507996422180784,13211600995751697,
%U 345145619340179829,9051411187977957135,238160821447956629934,6284647075107225737511,166263704846500625494533
%N G.f.: A(x) = ( Sum_{n>=0} 9^n*(2*n+1) * (-x)^(n*(n+1)/2) )^(-1/3).
%C Compare to the q-series identity:
%C 1/P(x)^3 = Sum_{n>=0} (-1)^n*(2*n+1) * x^(n*(n+1)/2),
%C where P(x) is the partition function (g.f. of A000041).
%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006.
%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
%F a(5*n+4) == 0 (mod 5).
%F Self-convolution cube of A202437.
%F Conjectures: a(25*n+24) == 0 (mod 25) (checked up to n = 50) and a(7*n+5) == 0 (mod 7) (checked up to n = 200). - _Peter Bala_, Feb 26 2021
%e G.f.: A(x) = 1 + 9*x + 162*x^2 + 3537*x^3 + 81405*x^4 + 1944243*x^5 +...
%e where
%e 1/A(x)^3 = 1 - 27*x - 405*x^3 + 5103*x^6 + 59049*x^10 - 649539*x^15 - 6908733*x^21 +...+ 9^n*(2*n+1)*(-x)^(n*(n+1)/2) +...
%t nmax = 18;
%t Sum[9^n (2n+1)(-x)^(n(n+1)/2), {n, 0, nmax}]^(-1/3) + O[x]^nmax // CoefficientList[#, x]& (* _Jean-François Alcover_, Sep 09 2018 *)
%o (PARI) {a(n)=polcoeff(sum(m=0,sqrtint(2*n+1),9^m*(2*m+1)*(-x)^(m*(m+1)/2)+x*O(x^n))^(-1/3),n)}
%Y Cf. A202437, A202210, A193236, A193237, A111984.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Dec 19 2011