login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202237
Odd numbers with the same number of prime factors of the form 4*k+1 and 4*k+3.
2
1, 15, 35, 39, 51, 55, 87, 91, 95, 111, 115, 119, 123, 143, 155, 159, 183, 187, 203, 215, 219, 225, 235, 247, 259, 267, 287, 291, 295, 299, 303, 319, 323, 327, 335, 339, 355, 371, 391, 395, 403, 407, 411, 415, 427, 447, 451, 471, 511, 515, 519, 525, 527, 535, 543, 551
OFFSET
1,2
COMMENTS
Primes are counted with multiplicity.
Closed under multiplication.
MAPLE
isA202237 := proc(n)
if type(n, 'odd') then
A083025(n) = A065339(n) ;
else
false;
end if;
end proc:
for n from 1 to 200 do
if isA202237(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Dec 16 2011
MATHEMATICA
fQ[n_]:=Plus@@((Mod[#[[1]], 4]-2)*#[[2]]&/@If[==1, {}, FactorInteger[n]]==0 && OddQ[n]; Select[Range[600], fQ] (* Ray Chandler, Dec 20 2011 *)
PROG
(PARI) netprime(n)=local(fm=factor(n)); sum(k=1, matsize(fm)[1], if(fm[k, 1]==2, 0, if(fm[k, 1]%4==1, fm[k, 2], -fm[k, 2])))
ap(n)=forstep(k=1, n, 2, if(netprime(k)==0, print1(k", ")))
CROSSREFS
A080774 (primitive elements), A072202 (even allowed).
Sequence in context: A360110 A359163 A327934 * A080774 A146319 A238605
KEYWORD
nonn
AUTHOR
STATUS
approved