%I #14 Aug 09 2015 01:07:10
%S 1,15,35,39,51,55,87,91,95,111,115,119,123,143,155,159,183,187,203,
%T 215,219,225,235,247,259,267,287,291,295,299,303,319,323,327,335,339,
%U 355,371,391,395,403,407,411,415,427,447,451,471,511,515,519,525,527,535,543,551
%N Odd numbers with the same number of prime factors of the form 4*k+1 and 4*k+3.
%C Primes are counted with multiplicity.
%C Closed under multiplication.
%p isA202237 := proc(n)
%p if type(n,'odd') then
%p A083025(n) = A065339(n) ;
%p else
%p false;
%p end if;
%p end proc:
%p for n from 1 to 200 do
%p if isA202237(n) then
%p printf("%d,",n);
%p end if;
%p end do: # _R. J. Mathar_, Dec 16 2011
%t fQ[n_]:=Plus@@((Mod[#[[1]],4]-2)*#[[2]]&/@If[==1,{},FactorInteger[n]]==0 && OddQ[n]; Select[Range[600],fQ] (* _Ray Chandler_, Dec 20 2011 *)
%o (PARI) netprime(n)=local(fm=factor(n));sum(k=1,matsize(fm)[1],if(fm[k,1]==2,0,if(fm[k,1]%4==1,fm[k,2],-fm[k,2])))
%o ap(n)=forstep(k=1,n,2,if(netprime(k)==0,print1(k", ")))
%Y A080774 (primitive elements), A072202 (even allowed).
%K nonn
%O 1,2
%A _Franklin T. Adams-Watters_, Dec 16 2011