login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd numbers with the same number of prime factors of the form 4*k+1 and 4*k+3.
2

%I #14 Aug 09 2015 01:07:10

%S 1,15,35,39,51,55,87,91,95,111,115,119,123,143,155,159,183,187,203,

%T 215,219,225,235,247,259,267,287,291,295,299,303,319,323,327,335,339,

%U 355,371,391,395,403,407,411,415,427,447,451,471,511,515,519,525,527,535,543,551

%N Odd numbers with the same number of prime factors of the form 4*k+1 and 4*k+3.

%C Primes are counted with multiplicity.

%C Closed under multiplication.

%p isA202237 := proc(n)

%p if type(n,'odd') then

%p A083025(n) = A065339(n) ;

%p else

%p false;

%p end if;

%p end proc:

%p for n from 1 to 200 do

%p if isA202237(n) then

%p printf("%d,",n);

%p end if;

%p end do: # _R. J. Mathar_, Dec 16 2011

%t fQ[n_]:=Plus@@((Mod[#[[1]],4]-2)*#[[2]]&/@If[==1,{},FactorInteger[n]]==0 && OddQ[n]; Select[Range[600],fQ] (* _Ray Chandler_, Dec 20 2011 *)

%o (PARI) netprime(n)=local(fm=factor(n));sum(k=1,matsize(fm)[1],if(fm[k,1]==2,0,if(fm[k,1]%4==1,fm[k,2],-fm[k,2])))

%o ap(n)=forstep(k=1,n,2,if(netprime(k)==0,print1(k", ")))

%Y A080774 (primitive elements), A072202 (even allowed).

%K nonn

%O 1,2

%A _Franklin T. Adams-Watters_, Dec 16 2011