The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202240 a(n) is the smallest number k such that the sum of the n-th powers of the digits of k equals the sum of the divisors of k other than 1 and k. 3
 125, 142, 1005, 118678, 706862, 18481615, 122003411, 30330043, 5923078409, 22110133333, 120175787632, 5971473681952 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 LINKS EXAMPLE a(5) = 118678 because 1^5 + 1^5 + 8^5 + 6^5 + 7^5 + 8^5  = 90121, and sum of the divisors 1 < d < a(5) = sigma(118678) - 118678 - 1 = 90121. MAPLE with(numtheory): for n from 2 to 7 do: i:=0:for k from 1 to 10^8 while(i=0) do:V:=convert(k, base, 10): n1:=nops(V):x:=divisors(k):n2:=nops(x):s:=sum(V[m]^n, m=1..n1):s1:=sum(x[a], a=1..n2):s1:=s1-1-k:if s=s1 then i:=1:printf ( "%d %d \n", n, k):else fi:od:od: MATHEMATICA (*** We suggest to change the value of x by successively x = 2, 3, ... and to keep the first term ***) Q[n_] := Module[{a = Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]^x]]; Select[Range[2, 5*10^7], Q] PROG (PARI) f(k, n) = my(d=digits(k)); sum(i=1, #d, d[i]^n); a(n) = my(k=1); while(f(k, n) != sigma(k)-k-1, k++); k; \\ Michel Marcus, Sep 29 2018 CROSSREFS Cf. A070308 (n=2, "Canada perfect numbers"). Cf. A202279 (n=3), A202147 (n=4), A202285 (n=5). Sequence in context: A046759 A115938 A126895 * A069656 A196943 A307386 Adjacent sequences:  A202237 A202238 A202239 * A202241 A202242 A202243 KEYWORD nonn,hard,base,more AUTHOR Michel Lagneau, Dec 16 2011 EXTENSIONS a(8)-a(9) added by Amiram Eldar, Sep 29 2018 a(10)-a(13) from Giovanni Resta, Oct 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 22:45 EDT 2020. Contains 334756 sequences. (Running on oeis4.)