The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202279 Numbers k such that the sum of digits^3 of k equals Sum_{d|k, 1
 142, 160, 1375, 6127, 12643, 51703, 86833, 103039, 104647, 112093, 137317, 218269, 261883, 266923, 449881, 505891, 617569, 907873 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The sequence is finite because the restricted sum of divisors of n, for n composite, is at least sqrt(n), while the sum of the cubes of the digits of n is at most 9^3*log_10(n+1). - Giovanni Resta, Oct 05 2018 LINKS Table of n, a(n) for n=1..18. FORMULA {n: A055012(n) = A048050(n)}. - R. J. Mathar, Dec 15 2011 EXAMPLE 160 is in the sequence because 1^3 + 6^3 + 0^3 = 217, and the sum of the divisors 1< d<160 is 2 + 4 + 5 + 8 + 10 + 16 + 20 + 32 + 40 + 80 = 217. MAPLE A055012 := proc(n) add(d^3, d=convert(n, base, 10)) ; end proc: A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc: isA202279 := proc(n) A055012(n) = A048050(n) ; end proc: for n from 1 do if isA202279(n) then printf("%d, \n", n); end if; end do; # R. J. Mathar, Dec 15 2011 MATHEMATICA Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]^3]]; Select[Range[2, 5*10^7], Q] Select[Range[1000000], DivisorSigma[1, #]-#-1==Total[IntegerDigits[#]^3]&] (* Harvey P. Dale, Jul 19 2014 *) CROSSREFS Cf. A070308, A202279, A202147, A202285, A202240. Sequence in context: A172836 A087001 A025379 * A035702 A172335 A217531 Adjacent sequences: A202276 A202277 A202278 * A202280 A202281 A202282 KEYWORD nonn,base,fini,full AUTHOR Michel Lagneau, Dec 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 08:27 EDT 2024. Contains 371698 sequences. (Running on oeis4.)