login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202279
Numbers k such that the sum of digits^3 of k equals Sum_{d|k, 1<d<k} d.
4
142, 160, 1375, 6127, 12643, 51703, 86833, 103039, 104647, 112093, 137317, 218269, 261883, 266923, 449881, 505891, 617569, 907873
OFFSET
1,1
COMMENTS
The sequence is finite because the restricted sum of divisors of n, for n composite, is at least sqrt(n), while the sum of the cubes of the digits of n is at most 9^3*log_10(n+1). - Giovanni Resta, Oct 05 2018
FORMULA
{n: A055012(n) = A048050(n)}. - R. J. Mathar, Dec 15 2011
EXAMPLE
160 is in the sequence because 1^3 + 6^3 + 0^3 = 217, and the sum of the divisors 1< d<160 is 2 + 4 + 5 + 8 + 10 + 16 + 20 + 32 + 40 + 80 = 217.
MAPLE
A055012 := proc(n)
add(d^3, d=convert(n, base, 10)) ;
end proc:
A048050 := proc(n)
if n > 1 then
numtheory[sigma](n)-1-n ;
else
0;
end if;
end proc:
isA202279 := proc(n)
A055012(n) = A048050(n) ;
end proc:
for n from 1 do
if isA202279(n) then
printf("%d, \n", n);
end if;
end do; # R. J. Mathar, Dec 15 2011
MATHEMATICA
Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]^3]]; Select[Range[2, 5*10^7], Q]
Select[Range[1000000], DivisorSigma[1, #]-#-1==Total[IntegerDigits[#]^3]&] (* Harvey P. Dale, Jul 19 2014 *)
CROSSREFS
KEYWORD
nonn,base,fini,full
AUTHOR
Michel Lagneau, Dec 15 2011
STATUS
approved