login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the sum of digits^3 of k equals Sum_{d|k, 1<d<k} d.
4

%I #20 Feb 14 2021 15:25:22

%S 142,160,1375,6127,12643,51703,86833,103039,104647,112093,137317,

%T 218269,261883,266923,449881,505891,617569,907873

%N Numbers k such that the sum of digits^3 of k equals Sum_{d|k, 1<d<k} d.

%C The sequence is finite because the restricted sum of divisors of n, for n composite, is at least sqrt(n), while the sum of the cubes of the digits of n is at most 9^3*log_10(n+1). - _Giovanni Resta_, Oct 05 2018

%F {n: A055012(n) = A048050(n)}. - _R. J. Mathar_, Dec 15 2011

%e 160 is in the sequence because 1^3 + 6^3 + 0^3 = 217, and the sum of the divisors 1< d<160 is 2 + 4 + 5 + 8 + 10 + 16 + 20 + 32 + 40 + 80 = 217.

%p A055012 := proc(n)

%p add(d^3,d=convert(n,base,10)) ;

%p end proc:

%p A048050 := proc(n)

%p if n > 1 then

%p numtheory[sigma](n)-1-n ;

%p else

%p 0;

%p end if;

%p end proc:

%p isA202279 := proc(n)

%p A055012(n) = A048050(n) ;

%p end proc:

%p for n from 1 do

%p if isA202279(n) then

%p printf("%d,\n",n);

%p end if;

%p end do; # _R. J. Mathar_, Dec 15 2011

%t Q[n_]:=Module[{a=Total[Rest[Most[Divisors[n]]]]}, a == Total[IntegerDigits[n]^3]]; Select[Range[2, 5*10^7], Q]

%t Select[Range[1000000],DivisorSigma[1,#]-#-1==Total[IntegerDigits[#]^3]&] (* _Harvey P. Dale_, Jul 19 2014 *)

%Y Cf. A070308, A202279, A202147, A202285, A202240.

%K nonn,base,fini,full

%O 1,1

%A _Michel Lagneau_, Dec 15 2011