login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202189
Triangle T(n,k) = coefficient of x^n in expansion of x^k*(1+x+x^2)^(k*x) = sum(n>=k, T(n,k) x^n*k!/n!).
0
1, 0, 1, 6, 0, 1, 12, 24, 0, 1, -20, 60, 60, 0, 1, 540, 240, 180, 120, 0, 1, -882, 6300, 2100, 420, 210, 0, 1, -6720, -8736, 35280, 8960, 840, 336, 0, 1, 189936, 181440, 13608, 136080, 27720, 1512, 504, 0, 1
OFFSET
1,4
COMMENTS
Also the Bell transform of (n+1)!*Sum_{k=0..n}(Sum_{i=k..n-k}((-1)^(i-k)*S1(i,k)* binomial(i,n-k-i)/i!) where S1 are the Stirling cycle numbers A132393. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 15 2016
FORMULA
T(n,m) = n!/m!*sum(k=0..n-m, (sum(i=k,n-m-k, (stirling1(i,k)*binomial(i,n-m-k-i))/i!))*m^k).
EXAMPLE
Triangle begins:
1
0, 1,
6, 0, 1,
12, 24, 0, 1,
-20, 60, 60, 0, 1,
540, 240, 180, 120, 0, 1,
-882, 6300, 2100, 420, 210, 0, 1
MATHEMATICA
Table[n!/m! Sum[Sum[(StirlingS1[i, k] Binomial[i, n - m - k - i])/i!, {i, k, n - m - k}] m^k, {k, 0, n - m}], {n, 9}, {m, n}] // Flatten (* Michael De Vlieger, Jan 15 2016 *)
PROG
(Maxima)
T(n, m):=n!/m!*sum((sum((stirling1(i, k)*binomial(i, n-m-k-i))/i!, i, k, n-m-k))*m^k, k, 0, n-m);
(Sage) # uses[bell_transform from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
def A202189_row(n):
f = lambda n: factorial(n+1)*sum(sum((-1)^(i-k)*stirling_number1(i, k)* binomial(i, n-k-i)/factorial(i) for i in (k..n-k)) for k in (0..n))
return bell_transform(n, [f(k) for k in (0..n)])
[A202189_row(n) for n in (0..9)] # Peter Luschny, Jan 15 2016
CROSSREFS
Sequence in context: A215080 A317446 A137943 * A202183 A227612 A221273
KEYWORD
sign,tabl
AUTHOR
Vladimir Kruchinin, Dec 13 2011
STATUS
approved