The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201936 Decimal expansion of the least number x satisfying 2*x^2=e^(-x). 6
 2, 6, 1, 7, 8, 6, 6, 6, 1, 3, 0, 6, 6, 8, 1, 2, 7, 6, 9, 1, 7, 8, 9, 7, 8, 0, 5, 9, 1, 4, 3, 2, 0, 2, 8, 1, 7, 3, 2, 0, 2, 7, 4, 3, 5, 9, 4, 1, 0, 4, 8, 2, 9, 1, 9, 2, 1, 0, 5, 0, 8, 1, 6, 1, 0, 4, 0, 3, 7, 0, 3, 2, 5, 3, 3, 2, 2, 7, 9, 6, 5, 9, 9, 6, 5, 0, 6, 3, 6, 1, 7, 0, 4, 5, 6, 3, 3, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS For some choices of a, b, c, there is a unique value of x satisfying a*x^2+bx+c=e^x; for other choices, there are two solutions; and for others, three.  Guide to related sequences, with graphs included in Mathematica programs: a.... b.... c.... x 1.... 0.... 0.... A126583 2.... 0.... 0.... A201936, A201937, A201938 1.... 0... -1.... A201940 1.... 1.... 0.... A201941 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0.  We call the graph of z=g(u,v) an implicit surface of f. For an example related to A201936, take f(x,u,v)=u*x^2+v-e^(-x) and g(u,v) = a nonzero solution x of f(x,u,v)=0.  If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous.  A portion of an implicit surface is plotted by Program 2 in the Mathematica section. LINKS EXAMPLE least x:  -2.617866613066812769178978059143202... greatest negative x:  -1.487962065498177156254... greatest x:  0.5398352769028200492118039083633... MATHEMATICA a = 2; b = 0; c = 0; f[x_] := a*x^2 + b*x + c; g[x_] := E^-x Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110] RealDigits[r]  (* A201936 *) r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110] RealDigits[r]   (* A201937 *) r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r]   (* A201938 *) (* Program 2: implicit surface of u*x^2+v=e^(-x) *) f[{x_, u_, v_}] := u*x^2 + v - E^-x; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, .3}]}, {v, -4, 0}, {u, 1, 10}]; ListPlot3D[Flatten[t, 1]]  (* for A201936 *) CROSSREFS Cf. A201741 [a*x^2+b*x+c=e^x]. Sequence in context: A136766 A199501 A021386 * A019679 A104457 A155832 Adjacent sequences:  A201933 A201934 A201935 * A201937 A201938 A201939 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 22:27 EDT 2021. Contains 346377 sequences. (Running on oeis4.)