login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201937
Decimal expansion of the greatest negative number x satisfying 2*x^2=e^(-x).
3
1, 4, 8, 7, 9, 6, 2, 0, 6, 5, 4, 9, 8, 1, 7, 7, 1, 5, 6, 2, 5, 4, 3, 7, 0, 1, 2, 0, 9, 3, 2, 6, 3, 2, 5, 6, 3, 7, 2, 6, 4, 8, 4, 2, 4, 3, 7, 8, 0, 2, 1, 0, 6, 8, 4, 6, 2, 3, 6, 9, 6, 8, 9, 7, 7, 2, 6, 8, 6, 8, 0, 9, 4, 4, 6, 2, 7, 6, 8, 7, 4, 4, 2, 2, 8, 9, 2, 0, 8, 3, 0, 1, 2, 0, 9, 0, 1, 8, 8
OFFSET
1,2
COMMENTS
See A201936 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -2.617866613066812769178978059143202...
greatest negative x: -1.487962065498177156254...
greatest x: 0.5398352769028200492118039083633...
MATHEMATICA
a = 2; b = 0; c = 0;
f[x_] := a*x^2 + b*x + c; g[x_] := E^-x
Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110]
RealDigits[r] (* A201936 *)
r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110]
RealDigits[r] (* A201937 *)
r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
RealDigits[r] (* A201938 *)
CROSSREFS
Cf. A201936.
Sequence in context: A021209 A247605 A244000 * A211456 A309665 A196205
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 13 2011
STATUS
approved