The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201937 Decimal expansion of the greatest negative number x satisfying 2*x^2=e^(-x). 3
 1, 4, 8, 7, 9, 6, 2, 0, 6, 5, 4, 9, 8, 1, 7, 7, 1, 5, 6, 2, 5, 4, 3, 7, 0, 1, 2, 0, 9, 3, 2, 6, 3, 2, 5, 6, 3, 7, 2, 6, 4, 8, 4, 2, 4, 3, 7, 8, 0, 2, 1, 0, 6, 8, 4, 6, 2, 3, 6, 9, 6, 8, 9, 7, 7, 2, 6, 8, 6, 8, 0, 9, 4, 4, 6, 2, 7, 6, 8, 7, 4, 4, 2, 2, 8, 9, 2, 0, 8, 3, 0, 1, 2, 0, 9, 0, 1, 8, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A201936 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least x:  -2.617866613066812769178978059143202... greatest negative x:  -1.487962065498177156254... greatest x:  0.5398352769028200492118039083633... MATHEMATICA a = 2; b = 0; c = 0; f[x_] := a*x^2 + b*x + c; g[x_] := E^-x Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110] RealDigits[r]  (* A201936 *) r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110] RealDigits[r]   (* A201937 *) r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r]   (* A201938 *) CROSSREFS Cf. A201936. Sequence in context: A021209 A247605 A244000 * A211456 A309665 A196205 Adjacent sequences:  A201934 A201935 A201936 * A201938 A201939 A201940 KEYWORD nonn,cons AUTHOR Clark Kimberling, Dec 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 22:21 EDT 2021. Contains 346377 sequences. (Running on oeis4.)