The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A201937 Decimal expansion of the greatest negative number x satisfying 2*x^2=e^(-x). 3

%I

%S 1,4,8,7,9,6,2,0,6,5,4,9,8,1,7,7,1,5,6,2,5,4,3,7,0,1,2,0,9,3,2,6,3,2,

%T 5,6,3,7,2,6,4,8,4,2,4,3,7,8,0,2,1,0,6,8,4,6,2,3,6,9,6,8,9,7,7,2,6,8,

%U 6,8,0,9,4,4,6,2,7,6,8,7,4,4,2,2,8,9,2,0,8,3,0,1,2,0,9,0,1,8,8

%N Decimal expansion of the greatest negative number x satisfying 2*x^2=e^(-x).

%C See A201936 for a guide to related sequences. The Mathematica program includes a graph.

%e least x: -2.617866613066812769178978059143202...

%e greatest negative x: -1.487962065498177156254...

%e greatest x: 0.5398352769028200492118039083633...

%t a = 2; b = 0; c = 0;

%t f[x_] := a*x^2 + b*x + c; g[x_] := E^-x

%t Plot[{f[x], g[x]}, {x, -3, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201936 *)

%t r = x /. FindRoot[f[x] == g[x], {x, -2, -1}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201937 *)

%t r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201938 *)

%Y Cf. A201936.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Dec 13 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 09:52 EDT 2021. Contains 347597 sequences. (Running on oeis4.)