login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201933
Decimal expansion of the least x satisfying x^2 + 5*x + 2 = e^x.
4
4, 5, 6, 4, 0, 7, 8, 3, 6, 0, 3, 7, 9, 3, 7, 7, 2, 0, 1, 3, 4, 1, 4, 8, 6, 8, 5, 2, 3, 4, 2, 0, 7, 4, 4, 8, 0, 6, 9, 5, 7, 9, 6, 4, 3, 4, 6, 1, 3, 1, 4, 1, 1, 1, 2, 5, 2, 3, 5, 7, 5, 3, 5, 9, 5, 4, 2, 6, 0, 2, 8, 0, 7, 3, 3, 7, 5, 3, 7, 0, 3, 7, 9, 6, 6, 5, 8, 2, 3, 8, 8, 1, 9, 7, 7, 1, 3, 8, 2
OFFSET
1,1
COMMENTS
See A201741 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least: -4.5640783603793772013414868523420...
nearest to 0: -0.259069533051109108686405...
greatest: 3.43200871161068035280379146269...
MATHEMATICA
a = 1; b = 5; c = 2;
f[x_] := a*x^2 + b*x + c; g[x_] := E^x
Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -4.6, -4.5}, WorkingPrecision -> 110]
RealDigits[r] (* A201933 *)
r = x /. FindRoot[f[x] == g[x], {x, -.3, -.2}, WorkingPrecision -> 110]
RealDigits[r] (* A201934 *)
r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110]
RealDigits[r] (* A201935 *)
CROSSREFS
Cf. A201741.
Sequence in context: A200362 A309750 A096291 * A016719 A196999 A090370
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 06 2011
EXTENSIONS
a(87) onwards corrected by Georg Fischer, Aug 03 2021
STATUS
approved