login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200435
Number of -n..n arrays x(0..7) of 8 elements with zero sum and no two or three adjacent elements summing to zero.
1
0, 1928, 50592, 473034, 2591502, 10217182, 32233938, 86581308, 205946004, 445471164, 892792604, 1680711318, 3002811474, 5132333154, 8444609086, 13443374616, 20791260168, 31344775440, 46194094584, 66707951618, 94583955318
OFFSET
1,2
COMMENTS
Row 5 of A200430.
LINKS
FORMULA
Empirical: a(n) = (19328/315)*n^7 - (18373/90)*n^6 + (18602/45)*n^5 - (20887/36)*n^4 + (46687/90)*n^3 - (48359/180)*n^2 + (12499/210)*n.
Conjectures from Colin Barker, May 21 2018: (Start)
G.f.: 2*x^2*(964 + 17584*x + 61141*x^2 + 57919*x^3 + 15963*x^4 + 1053*x^5) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=3:
..0....3....1....0....1....3....0....1....0...-1...-3....3....0...-2....0...-3
..1....2....2....1....2....2...-1....0....2....0....2....2...-3...-1...-2...-2
..0...-3...-1....2....0...-1....3....3....2...-2...-1....1....2...-1...-1...-2
..3....2....0...-1...-3....0....1....2....2...-1....0....1....0...-1....2....1
..3....0...-1....3....1...-1....1...-1...-1....2...-2...-3...-3....3....2....2
.-2...-3....2....1....3...-1....1...-3...-2....1...-2...-2...-1...-1....2...-1
.-2....1...-3...-3...-1....0...-3...-2...-2....2....3....0....2....2....0....3
.-3...-2....0...-3...-3...-2...-2....0...-1...-1....3...-2....3....1...-3....2
CROSSREFS
Cf. A200430.
Sequence in context: A258841 A099482 A253337 * A252108 A220717 A162386
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 17 2011
STATUS
approved