login
A200432
Number of -n..n arrays x(0..4) of 5 elements with zero sum and no two or three adjacent elements summing to zero.
1
0, 80, 520, 1830, 4750, 10250, 19530, 34020, 55380, 85500, 126500, 180730, 250770, 339430, 449750, 585000, 748680, 944520, 1176480, 1448750, 1765750, 2132130, 2552770, 3032780, 3577500, 4192500, 4883580, 5656770, 6518330, 7474750, 8532750
OFFSET
1,2
COMMENTS
Row 2 of A200430.
LINKS
FORMULA
Empirical: a(n) = (115/12)*n^4 - (65/6)*n^3 + (65/12)*n^2 - (25/6)*n.
Conjectures from Colin Barker, May 20 2018: (Start)
G.f.: 10*x^2*(8 + 12*x + 3*x^2) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Some solutions for n=3:
.-3...-2...-2...-2....1....0....1....3....1....0...-3...-3....0....2....1...-3
.-2....0....3....1....1...-2....0....0...-2...-1....1...-2....2....0....2...-1
..3....3....0....0....1...-2....2....1...-2...-2....1....3...-1....1....1....0
..3...-1...-2....1...-3....1...-1...-3....3....0....2....2....0....0...-2....2
.-1....0....1....0....0....3...-2...-1....0....3...-1....0...-1...-3...-2....2
CROSSREFS
Cf. A200430.
Sequence in context: A085774 A233353 A233354 * A233351 A365887 A107624
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 17 2011
STATUS
approved