OFFSET
1,1
COMMENTS
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 1, 3, 31, 310, 3097, 30971, 309711, 3097110, 30971095, 309710953, ... . Apparently, the asymptotic density of this sequence exists and equals 0.003097109... .
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
80 = 2^4 * 5 is a term since its least prime factor, 2, is smaller than its exponent, 4, and the least prime factor of 81 = 3^4, 3, is also smaller than its exponent, 4.
MATHEMATICA
q[n_] := Less @@ FactorInteger[n][[1]]; consec[kmax_] := Module[{m = 1, c = Table[False, {2}], s = {}}, Do[c = Join[Rest[c], {q[k]}]; If[And @@ c, AppendTo[s, k - 1]], {k, 1, kmax}]; s]; consec[14000]
PROG
(PARI) is(n) = {my(f = factor(n)); n > 1 && f[1, 1] < f[1, 2]; }
lista(kmax) = {my(q1 = 0, q2); for(k = 2, kmax, q2 = is(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Sep 22 2023
STATUS
approved