login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200430 T(n,k)=Number of -k..k arrays x(0..n+2) of n+3 elements with zero sum and no two or three adjacent elements summing to zero 14
0, 20, 0, 92, 80, 0, 248, 520, 212, 0, 520, 1830, 2232, 594, 0, 940, 4750, 11008, 9898, 1928, 0, 1540, 10250, 36952, 67852, 50592, 6780, 0, 2352, 19530, 98052, 293464, 473034, 270848, 23674, 0, 3408, 34020, 221984, 955602, 2591502, 3397130, 1432402 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Table starts

.0.....20........92........248..........520...........940...........1540

.0.....80.......520.......1830.........4750.........10250..........19530

.0....212......2232......11008........36952.........98052.........221984

.0....594......9898......67852.......293464........955602........2567334

.0...1928.....50592.....473034......2591502......10217182.......32233938

.0...6780....270848....3397130.....23380862.....111101654......410475622

.0..23674...1432402...24220966....210222830....1206988576.....5230842688

.0..80750...7469120..171351382...1882624856...13090995142....66651385442

.0.271000..38883992.1214558880..16911040968..142480007436...852399648492

.0.909282.203526914.8651325238.152565274262.1556876199472.10942076565344

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..544

FORMULA

Empirical for rows:

T(1,k) = (16/3)*k^3 - 6*k^2 + (2/3)*k

T(2,k) = (115/12)*k^4 - (65/6)*k^3 + (65/12)*k^2 - (25/6)*k

T(3,k) = (88/5)*k^5 - (109/3)*k^4 + 44*k^3 - (107/3)*k^2 + (52/5)*k

T(4,k) = (5887/180)*k^6 - (5813/60)*k^5 + (6083/36)*k^4 - (2191/12)*k^3 + (9119/90)*k^2 - (353/15)*k

T(5,k) = (19328/315)*k^7 - (18373/90)*k^6 + (18602/45)*k^5 - (20887/36)*k^4 + (46687/90)*k^3 - (48359/180)*k^2 + (12499/210)*k

T(6,k) = (259723/2240)*k^8 - (2162653/5040)*k^7 + (1479629/1440)*k^6 - (642659/360)*k^5 + (6107509/2880)*k^4 - (1200571/720)*k^3 + (3930541/5040)*k^2 - (22719/140)*k

T(7,k) = (124952/567)*k^9 - (282778/315)*k^8 + (4520071/1890)*k^7 - (849277/180)*k^6 + (731309/108)*k^5 - (629357/90)*k^4 + (55560059/11340)*k^3 - (870757/420)*k^2 + (50299/126)*k

EXAMPLE

Some solutions for n=4 k=3

..1....2...-2...-2....1....3....0....0....3....0...-2...-1...-2....3...-3....1

.-2...-3....1...-3....3....1....2....3....0....3....3...-3...-3....0...-3....3

..3...-3...-3....0....2...-3....3....1...-2....2....1....2....2...-2....2....0

..0...-2...-1....2...-1...-3....0....0...-3....0...-3....0....2....3....2...-2

.-1....3....2....2....0....0...-2....1....1....1...-2...-1....0....1....0....3

..0....2....0....0...-2...-1....0...-3....0...-3....3....2....1...-3....3...-2

.-1....1....3....1...-3....3...-3...-2....1...-3....0....1....0...-2...-1...-3

CROSSREFS

Sequence in context: A278073 A324274 A070708 * A084029 A343329 A008426

Adjacent sequences:  A200427 A200428 A200429 * A200431 A200432 A200433

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin Nov 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 20 04:43 EDT 2021. Contains 345157 sequences. (Running on oeis4.)