The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200430 T(n,k)=Number of -k..k arrays x(0..n+2) of n+3 elements with zero sum and no two or three adjacent elements summing to zero 14
 0, 20, 0, 92, 80, 0, 248, 520, 212, 0, 520, 1830, 2232, 594, 0, 940, 4750, 11008, 9898, 1928, 0, 1540, 10250, 36952, 67852, 50592, 6780, 0, 2352, 19530, 98052, 293464, 473034, 270848, 23674, 0, 3408, 34020, 221984, 955602, 2591502, 3397130, 1432402 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Table starts .0.....20........92........248..........520...........940...........1540 .0.....80.......520.......1830.........4750.........10250..........19530 .0....212......2232......11008........36952.........98052.........221984 .0....594......9898......67852.......293464........955602........2567334 .0...1928.....50592.....473034......2591502......10217182.......32233938 .0...6780....270848....3397130.....23380862.....111101654......410475622 .0..23674...1432402...24220966....210222830....1206988576.....5230842688 .0..80750...7469120..171351382...1882624856...13090995142....66651385442 .0.271000..38883992.1214558880..16911040968..142480007436...852399648492 .0.909282.203526914.8651325238.152565274262.1556876199472.10942076565344 LINKS R. H. Hardin, Table of n, a(n) for n = 1..544 FORMULA Empirical for rows: T(1,k) = (16/3)*k^3 - 6*k^2 + (2/3)*k T(2,k) = (115/12)*k^4 - (65/6)*k^3 + (65/12)*k^2 - (25/6)*k T(3,k) = (88/5)*k^5 - (109/3)*k^4 + 44*k^3 - (107/3)*k^2 + (52/5)*k T(4,k) = (5887/180)*k^6 - (5813/60)*k^5 + (6083/36)*k^4 - (2191/12)*k^3 + (9119/90)*k^2 - (353/15)*k T(5,k) = (19328/315)*k^7 - (18373/90)*k^6 + (18602/45)*k^5 - (20887/36)*k^4 + (46687/90)*k^3 - (48359/180)*k^2 + (12499/210)*k T(6,k) = (259723/2240)*k^8 - (2162653/5040)*k^7 + (1479629/1440)*k^6 - (642659/360)*k^5 + (6107509/2880)*k^4 - (1200571/720)*k^3 + (3930541/5040)*k^2 - (22719/140)*k T(7,k) = (124952/567)*k^9 - (282778/315)*k^8 + (4520071/1890)*k^7 - (849277/180)*k^6 + (731309/108)*k^5 - (629357/90)*k^4 + (55560059/11340)*k^3 - (870757/420)*k^2 + (50299/126)*k EXAMPLE Some solutions for n=4 k=3 ..1....2...-2...-2....1....3....0....0....3....0...-2...-1...-2....3...-3....1 .-2...-3....1...-3....3....1....2....3....0....3....3...-3...-3....0...-3....3 ..3...-3...-3....0....2...-3....3....1...-2....2....1....2....2...-2....2....0 ..0...-2...-1....2...-1...-3....0....0...-3....0...-3....0....2....3....2...-2 .-1....3....2....2....0....0...-2....1....1....1...-2...-1....0....1....0....3 ..0....2....0....0...-2...-1....0...-3....0...-3....3....2....1...-3....3...-2 .-1....1....3....1...-3....3...-3...-2....1...-3....0....1....0...-2...-1...-3 CROSSREFS Sequence in context: A278073 A324274 A070708 * A084029 A343329 A008426 Adjacent sequences:  A200427 A200428 A200429 * A200431 A200432 A200433 KEYWORD nonn,tabl AUTHOR R. H. Hardin Nov 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 04:43 EDT 2021. Contains 345157 sequences. (Running on oeis4.)