login
A200434
Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two or three adjacent elements summing to zero.
1
0, 594, 9898, 67852, 293464, 955602, 2567334, 6003816, 12643728, 24534258, 44579634, 76753204, 126333064, 200161234, 306926382, 457470096, 665116704, 946026642, 1319573370, 1808743836, 2440562488, 3246538834, 4263138550
OFFSET
1,2
COMMENTS
Row 4 of A200430.
LINKS
FORMULA
Empirical: a(n) = (5887/180)*n^6 - (5813/60)*n^5 + (6083/36)*n^4 - (2191/12)*n^3 + (9119/90)*n^2 - (353/15)*n.
Conjectures from Colin Barker, May 21 2018: (Start)
G.f.: 2*x^2*(297 + 2870*x + 5520*x^2 + 2784*x^3 + 303*x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
..0...-3....3....2...-2....1....2...-1....3....0...-1....0...-2....2...-1....1
.-3....0....2...-1....3....0....3...-2....3....1...-2...-2...-2...-1....0....1
.-1....2...-1....2....0....1...-2...-3...-1....2...-2....1...-1....3....2....0
..2....0...-3....0....2....3....0....0...-3....1....3....3...-1....3....1...-3
..1....2....2...-1....1...-2....1....1....1...-2....1....2....3...-2....0...-3
..1....1....0...-1...-2...-2...-3....3...-3...-3....3...-1....0...-3...-3....1
..0...-2...-3...-1...-2...-1...-1....2....0....1...-2...-3....3...-2....1....3
CROSSREFS
Cf. A200430.
Sequence in context: A025330 A035138 A206211 * A241876 A252534 A249705
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 17 2011
STATUS
approved