login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200438
G.f. satisfies: A(x) = exp( Sum_{n>=1} A(-x^n)^2 * x^n/n ).
3
1, 1, -1, -2, 5, 14, -40, -119, 351, 1083, -3291, -10424, 32562, 105066, -334666, -1094595, 3536043, 11686231, -38172425, -127199414, 419230644, 1406346735, -4669311299, -15750517780, 52616257231, 178312867791, -598779740235, -2037290707630, 6871904761413, 23461177498832
OFFSET
0,4
COMMENTS
Compare g.f. to the trivial identity: G(x) = exp(Sum_{n>=1} G(-x^n)*x^n/n) where G(x) = 1+x.
abs(a(n+1)/a(n)) tends to 3.576353722518567708610064857260994390208457341780918501933217195112489... . - Vaclav Kotesovec, Mar 24 2017
LINKS
FORMULA
Equals the Euler transformation of the coefficients in A(-x)^2, where A(x) is the g.f. of this sequence.
EXAMPLE
G.f.: A(x) = 1 + x - x^2 - 2*x^3 + 5*x^4 + 14*x^5 - 40*x^6 - 119*x^7 +...
where
log(A(x)) = A(-x)^2*x + A(-x^2)^2*x^2/2 + A(-x^3)^2*x^3/3 + A(-x^4)^2*x^4/4 +...
The coefficients in A(-x)^2 begin:
[1,-2,-1,6,7,-42,-58,366,513,-3406,-4846,33310,48304,-339446,...]
and the g.f. may be expressed by the Euler product:
A(x) = 1/((1-x)^1*(1-x^2)^-2*(1-x^3)^-1*(1-x^4)^6*(1-x^5)^7*(1-x^6)^-42*(1-x^7)^-58*(1-x^8)^366*...).
MAPLE
b:= proc(n) option remember; (-1)^n*add(a(i)*a(n-i), i=0..n) end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(
d*b(d-1), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 24 2017
MATHEMATICA
A200438List[n_] := Module[{A, x, i}, A = 1+x; For[i=1, i <= n, i++, A = Exp[Sum[(A^2 /. x -> -x^m)*x^m/m, {m, 1, n}] + x*O[x]^n // Normal]]; CoefficientList[A + O[x]^n, x]]; A200438List[30] (* Jean-François Alcover, Mar 24 2017, adapted from PARI *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, subst(A^2, x, -x^m)*x^m/m)+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Cf. A200402.
Sequence in context: A075496 A114177 A349413 * A363933 A103140 A148320
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 17 2011
STATUS
approved